Meeting Modelling Challenges: ADMS 4 and ADMS-Airport

David Carruthers

Cambridge Environmental Research Consultants

DMUG 25 September 2007

Content

ADMS 4

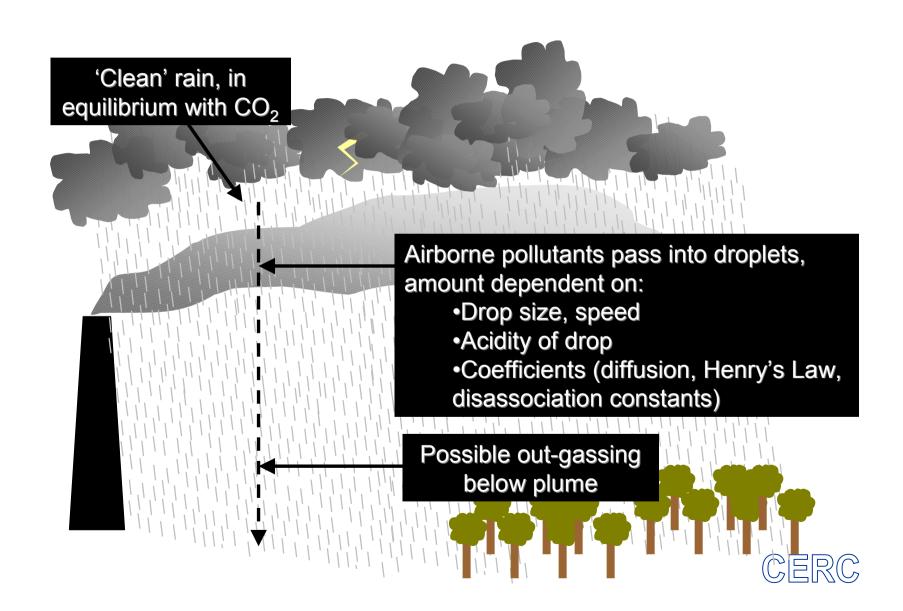
- New features
- Flat terrain validation
- Buildings validation
- Hills & hills with buildings validation

ADMS-Airport

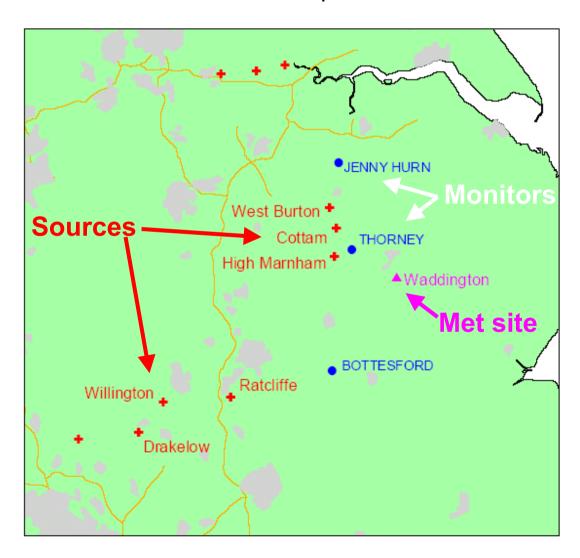
New scientific features

- Improvements to the buildings module
 - Changes to the effective building
 - Modifications for stable and convective conditions
- Wet deposition of SO2 and HCl improved by use of a "Falling Drop" model of kinetics and chemistry
- Treatment of calm conditions
- Extension to coastline module
- Use of vertical profiles of met parameters

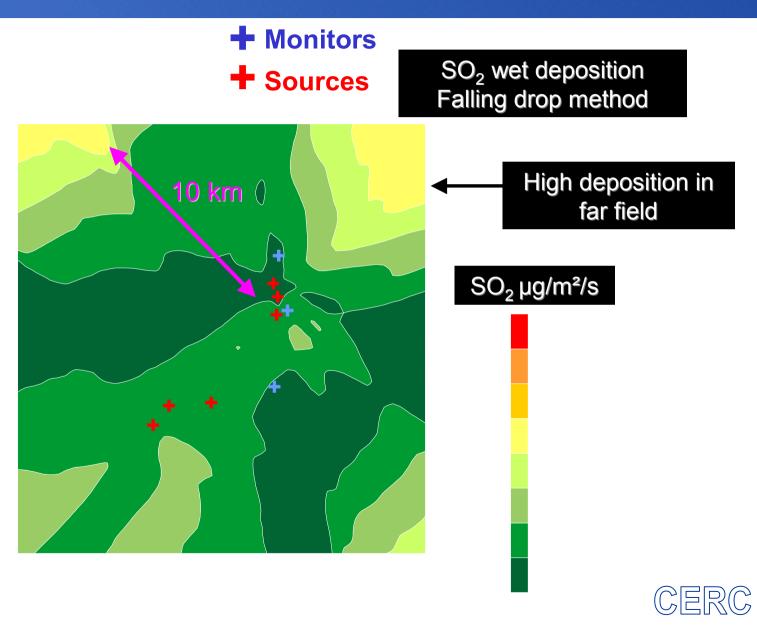
New scientific features (cont)

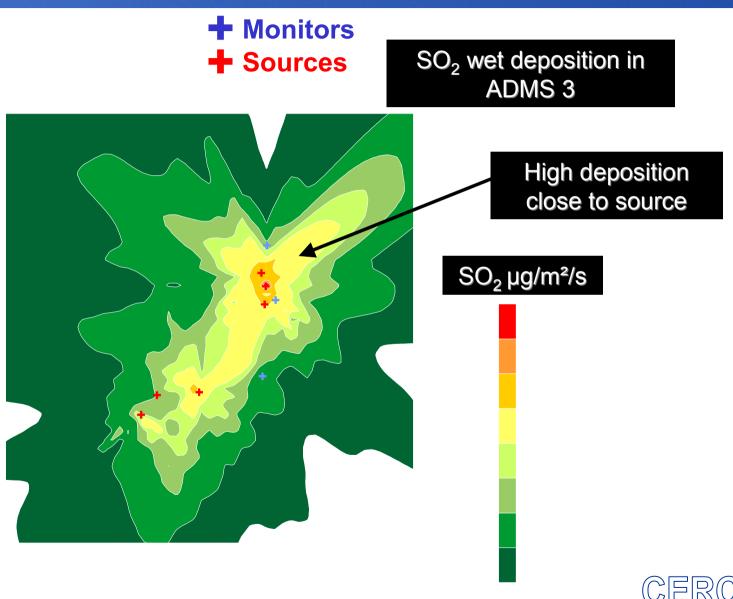

- More meteorological parameters (source and met site)
 - Priestley-Taylor parameter, albedo
- Outputs specific or relative humidity and temperature
- Calculates gamma dose due to deposition
- Input of spatially varying flow and turbulence e.g. mesoscale model output
- Offshore boundary layer
- Many user features.

Wet deposition in ADMS 4


Model Description – Falling Drop

Wet deposition in ADMS 4 Comparison with data

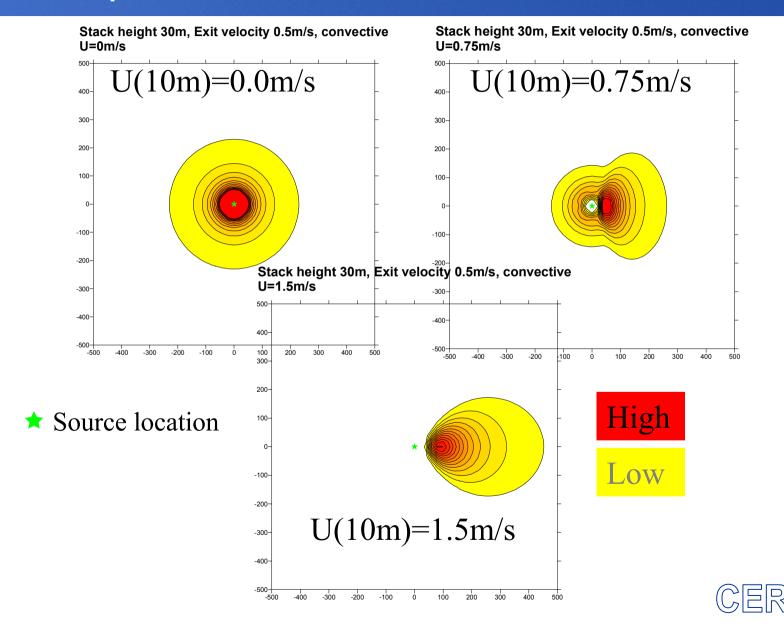

JEP report 'Comparison of ADMS Wet Deposition Against Monitored Data and Assessment of the Relevance of HCl Deposition from Power Stations'



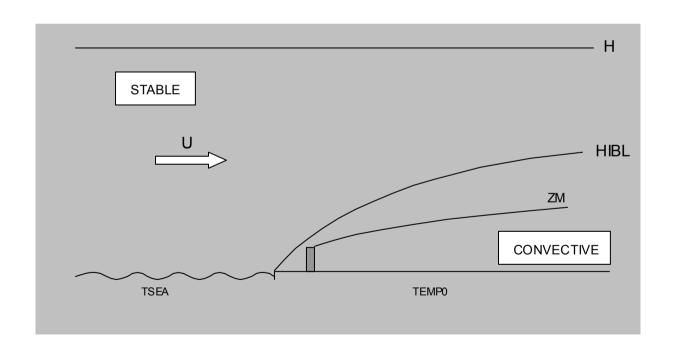
Wet deposition ADMS 4 predicted wet deposition

Wet deposition **ADMS 3 predicted wet deposition**

Calm conditions New approach in ADMS 4


- New 'hybrid' approach at low wind speeds:
 - At wind speeds less than or equal to 0.5m/s use a radially symmetric solution assuming equal probability of all wind directions.
 - At wind speeds above approximately 1.2m/s (depends on vertical turbulence, time travelled from source), use standard ADMS calculations.
 - At wind speeds between these limits, interpolate between the radially symmetric and standard ADMS solutions

Calm Conditions


30m non-passive source in convective conditions

Coastline - extended

Now include sources starting inside internal boundary layer

Validation – aims and methods of analysis

ADMS 4 validation:

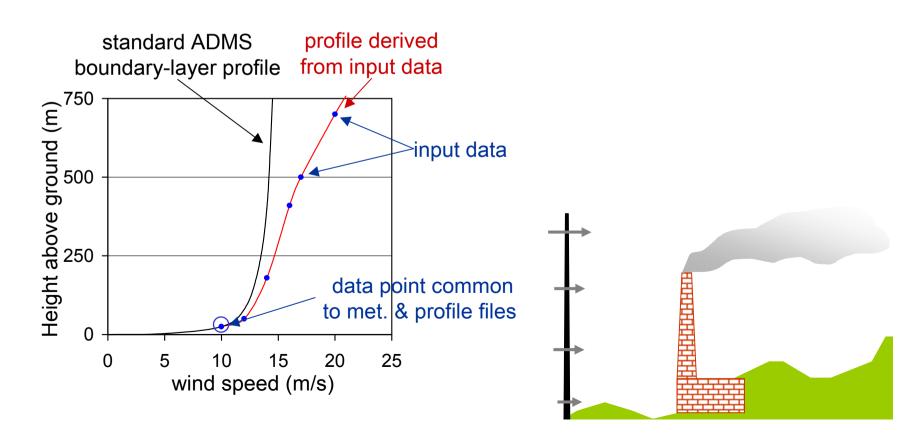
- 20 studies used
- Model set up:
 - Flat terrain (without buildings)
 - Hills
 - With buildings
 - Met. profile files
- Calculations:
 - Long-term (year)
 - Short-term (few met. lines)
- Monitored data:
 - field campaign
 - wind tunnel experiments

Validation – aims and methods of analysis

Results

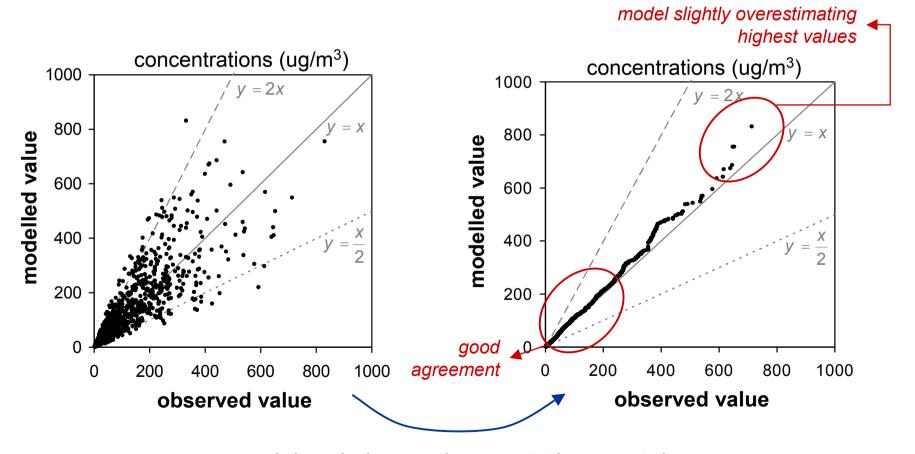
- Remove (observed, modelled) if observed or modelled not present
- Remove (observed, modelled) = (0, 0)
- Ignore data with a (supplied) low quality index
- Work with these data or normalised by emission rate (usually)
- Graphical: scatter plot and quantile-quantile plot
- Numerical:
 - mean
 - 1-hour, 3-hour, 24-hour maximum values
 - Robust Highest Concentration (RHC)
 - BOOT statistical package from Model Validation Kit

Issues


- Behaviour of high values dominate the mean
- Useful to normalise by the observed concentration
- Look at other statistics

Meteorological profile data

- Met tower: wind speed, temperature, etc., at different heights
- ADMS 4 can use 'profile' data to adjust the standard ADMS boundary layer profiles



Validation – aims and methods of analysis

Scatter plot of concentrations of the pollutant

Quantile-quantile plot of concentrations of the pollutant

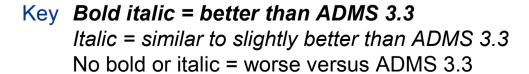
Validation – aims and methods of analysis

BOOT statistical package: range of statistics

Dimensional measure

Non-dimensional measure

Data	Mean	σ	Bias	NMSE	Correlation	Factor of 2
Observations	64.83	37.35	0	0	1	1
Model	37.35	25.43	15.99	0.44	0.47	0.68
		•	beh (<u>n</u> ormal		Frac	etion of values in a factor of 2

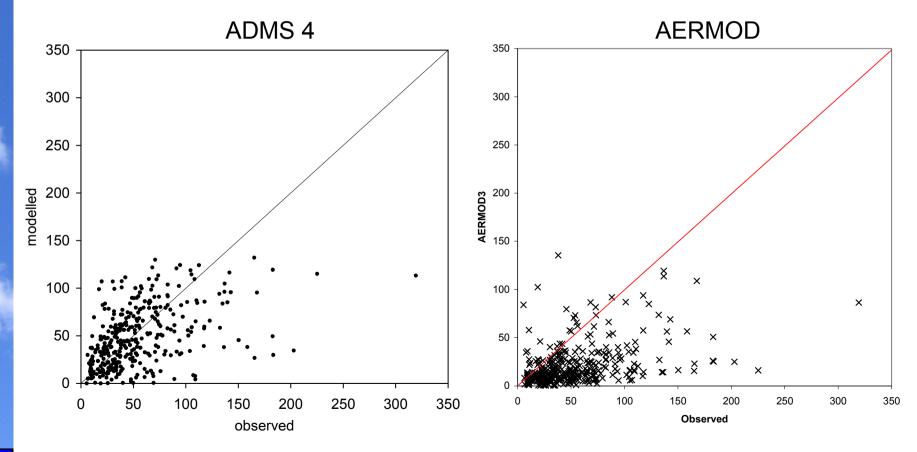


Flat terrain validation

Studies (tracer)	Release	Met.
Kincaid power plant Illinois, US	187-m stack	neutral, convective 171 hours
Indianapolis Perry-K power plant Indiana, US	84-m stack	all (day & night) 170 hours
Prairie Grass Nebraska, US	ground level passive	all (day & night)

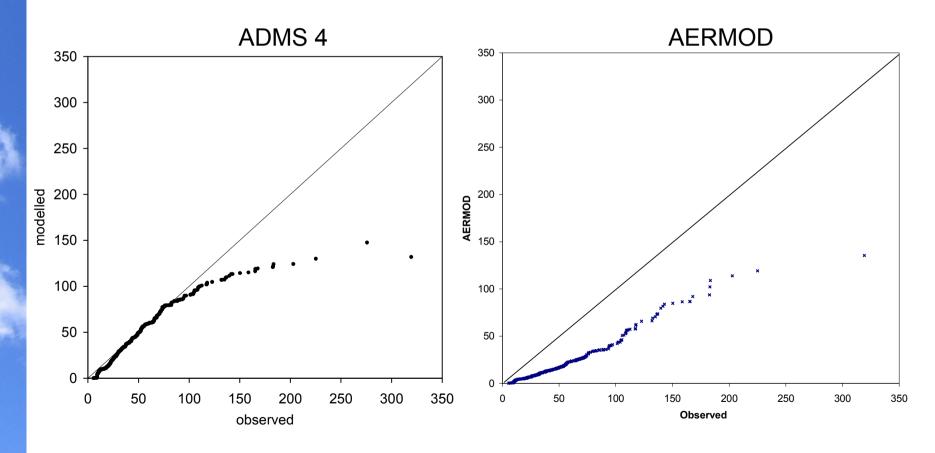
All flat terrain datasets are part of the Model Validation Kit (from "Harmonisation of Atmospheric Dispersion Modelling for Regulatory Purposes" conferences)

Flat terrain validation – summary of results


Data		Mean	σ	Bias	NMSE	Corr	Fac 2
Kincaid	Observations	54.3	40.3	0.0	0.0	1.00	1.00
Kincald	ADMS 4	48.5	31.5	5.9	0.6	0.45	0.68
Indianapolis	Observations	351.5	221.4	0.0	0.0	1.00	1.00
indianapons	ADMS 4	348.1	237.4	3.5	0.6	0.26	0.55
Prairie Grass	Observations	2.23	3.90	0.00	0.00	1.00	1.00
Fiallie Glass	ADMS 4	1.56	3.33	0.67	3.01	0.63	0.66

Flat terrain – Kincaid power plant

Scatter plots (ns/m³)



Flat terrain – Kincaid power plant

Quantile-quantile plots (ns/m³)

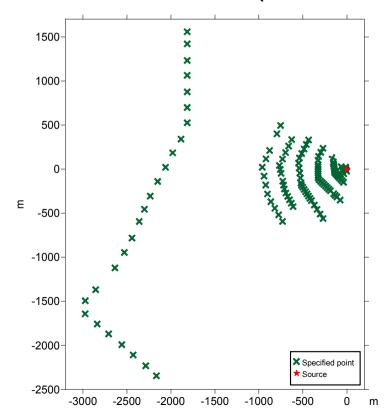
Buildings validation – field studies

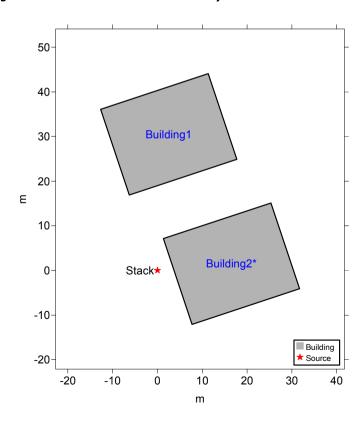
Study	Release	Building(s)	Met.	
AGA (tracer)	10-24 m stacks	12 m high	convective	
Texas, Kansas, US	buoyant	12 m high	(41 met. lines)	
Alaska (tracer)	39-m stack	24 m high	stable, neutral	
Alaska, US	buoyant	34 m high	(44 met. lines)	
Bowline Point site	87-m stack	30 to 65 m	mainly stable & conv.	
New York, US	buoyant	high	(1 year)	
EOCR (tracer)	1, 25, 30-m stacks	7 and 25 m	mainly convective	
Idaho, US	passive	high	(19 met. lines)	
Millstone power plant	29 & 48-m stacks	28-45 m	mainly stable & neutral	
Connecticut, US	buoyant	high	(36 met. lines)	

Buildings validation – summary of field study results

	Data		σ	Bias	NMSE	Corr	Fac 2
A C A	Observations	58.7	54.1	0.0	0.0	1.00	1.00
AGA	ADMS 4	75.9	65.8	17.2	0.9	0.51	0.51
	Observations	8.0	1.2	0.0	0.0	1.00	1.00
Alaska	ADMS 4	2.4	2.4	-1.6	3.7	0.47	0.23
EOCR	Observations	140.9	357.8	0.0	0.0	1.00	1.00
EUCK	ADMS 4	248.5	607.9	-107.6	7.2	0.59	0.43
Millstone	Observations	18.6	14.8	0.0	0.0	1.00	1.00
	ADMS 4	11.9	12.2	6.7	1.4	0.28	0.45

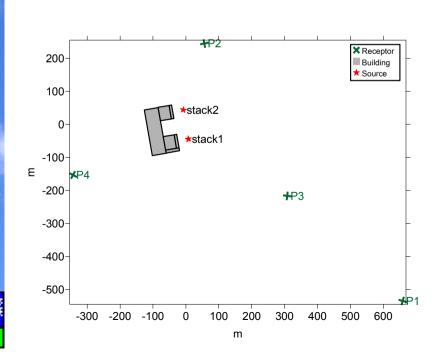
modelled/observed ratios

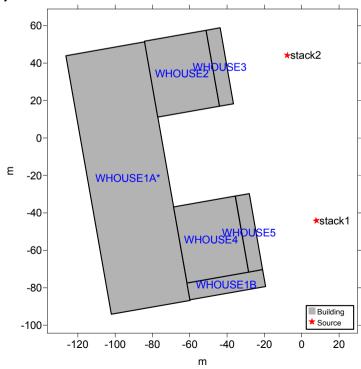

	Data	1-h max	3-h max	24-h max	annual mean	1-h RHC	3-h RHC	24-h RHC
Powline	ADMS 4	1.11	1.22	0.46	0.23	0.75	0.74	0.53
Bowline	AERMOD '03	-	-	-	-	1	1.14	1.43



Buildings – Alaska North Slope Tracer Study

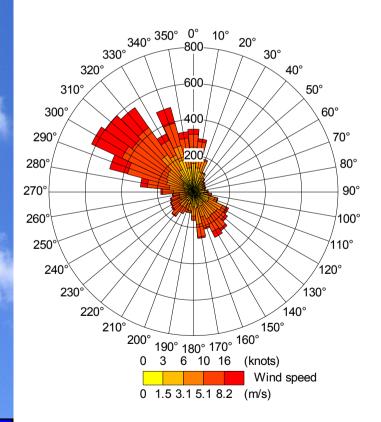
- Site smooth snow-covered tundra
- Met 44 hours, neutral or slightly stable
- Release 39-m high turbine stack, SF₆, buoyant
- Results us/m³ (normalised by emission rate)

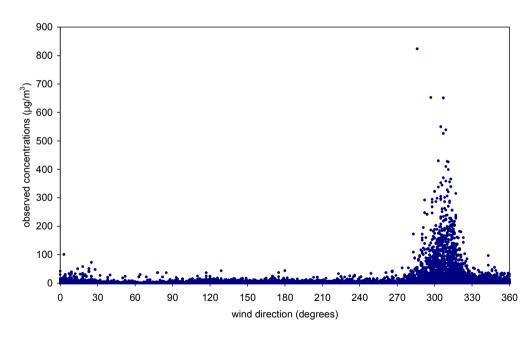




Buildings – Bowline Point site

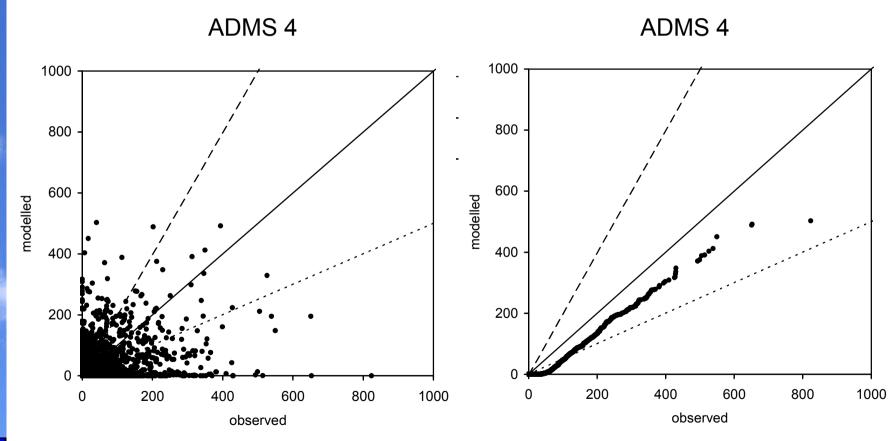
- Site Hudson River valley, rural and relatively flat terrain, urban area to the west, significant hills to the south-west
- Met one year, mainly stable or unstable
- Release 2 stacks, 87 m high, SO₂, buoyant
- Results µg/m³ (! background)





Buildings – Bowline Point site

 Wind rose and observed concentrations at P1 (ug/m³, versus wind direction)



Buildings – Bowline Point site

Scatter plot (left) and quantile-quantile plot (right) (ug/m³)

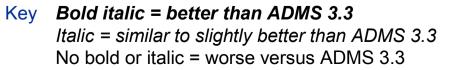
Buildings validation – wind tunnel studies

Wind tunnel: often a model set up of a real site (dimensions are equivalent full scale)

Study	Release	Building (s)	Met.
Lee	65-m stack range of buoyancies	rectangular (40 m high)	stable, neutral
Robins & Castro	60 to 150-m stacks range of buoyancies	cubic (60 m high)	neutral
Snyder	12.5, 50, 125-m stack buoyant	rectangular (50 m high)	neutral
Warehouse fires	roof openings range of buoyancies	rectangular (10 m high)	neutral

Buildings validation – summary of wind tunnel study results

	Data		σ	Bias	NMSE	Corr	Fac 2
Lee	Observations	2.77	2.53	0.00	0.00	1.00	1.00
	ADMS 4	2.65	2.26	0.11	0.23	0.86	0.79
Robins &	Observations	1.00	0.00	0.00	0.00	1.00	1.00
Castro	ADMS 4	0.96	0.32	0.04	0.11	0.84	0.85
Spydor	Observations	1.00	0.00	0.00	0.00	1	1.00
Snyder	ADMS 4	1.32	1.50	-0.32	1.77	-	0.86
Warehouse fires	Observations	1.00	0.68	0.00	0.00	1.00	1.00
	ADMS 4	0.59	0.89	0.41	1.35	0.52	0.37



Hills validation

Studies	Release	Terrain	Met.
Cinder Cone Butte (tracer) Idaho, US	15-40 m passive	isolated hill	neutral, stable 19 met. lines
Hogback Ridge (tracer) New Mexico, US	20-70 m passive	ridge of a hill	stable, convective 7 met. lines
Tracy power plant (tracer) Nevada, US	90 m buoyant	plant in a valley	stable 128 met. lines
Baldwin power plant* Illinois, US	185 m buoyant	plant in a valley	stable, convective (mainly) 1 year
Clifty Creek power plant Indiana, US	210 m buoyant	plant in a valley	stable, convective (mainly) 1 year
Martins Creek plant* Pennsylvania, US	65 to 182 m buoyant	plant in a valley	stable, convective (mainly) 1 year
Lovett power plant New-York, US	145-m stack buoyant	plant in a valley	stable, convective (mainly) 1 year
Westvaco plant Maryland, US	190 m buoyant	plant in a valley	stable, convective (mainly) 1 year

Hills validation – summary of results

Short-term studies

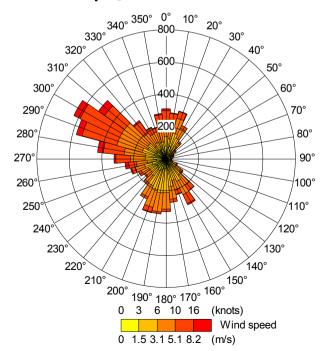
Data		Mean	σ	Bias	NMSE	Corr	Fac2
Cinder Cone Butte	Observations	5.20	7.49	0.00	0.00	1.00	1.00
	ADMS 4	3.01	4.15	2.18	3.60	0.35	0.29
T	Observations	0.22	0.53	0.00	0.00	1.00	1.00
Tracy	ADMS 4	0.14	0.50	0.08	16.12	0.09	0.07

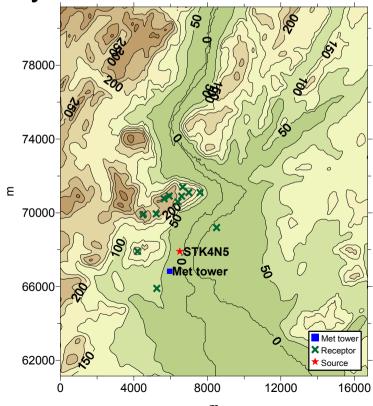
Hills studies – summary of results

Long-term studies

modelled/observed ratios

D	Data		3-h max	24-h max	annual mean	1-h RHC	3-h RHC	24-h RHC
Doldwin	ADMS 4	0.56	0.62	0.69	0.34	0.50	0.63	0.72
Baldwin	AERMOD '03	-	-	-	-	-	1.24	0.97
Clifty Crook	ADMS 4	0.91	1.11	0.79	0.32	0.98	1.15	0.85
Clifty Creek	AERMOD '03	_	-	-	-	-	1.05	0.67
Lovett	ADMS 4	0.95	0.83	0.67	0.35	0.82	0.70	0.44
Lovett	AERMOD '03	_	-	-	-	-	1.03	1.01
Martins	ADMS 4	0.65	0.64	0.44	0.22	0.56	0.40	0.34
Creek	AERMOD '03	-	-	-	-	-	1.12	1.78
Westvaco	ADMS 4	0.59	0.51	0.56	0.21	0.55	0.59	1.03
	AERMOD '03	-	-	-	-	-	1.06	1.07

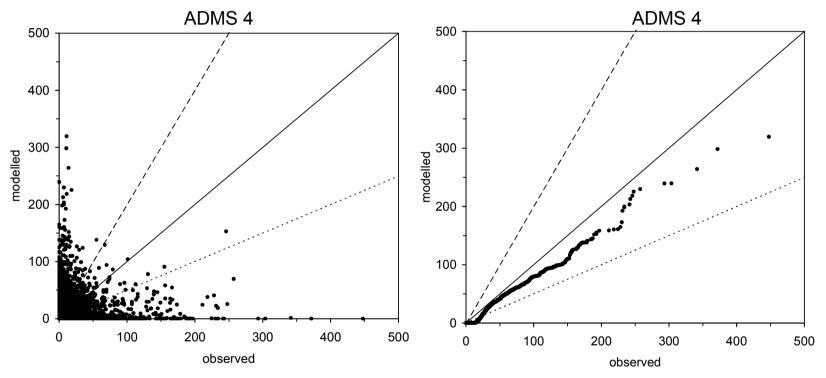




Hills validation – Lovett power plant

- Site Hudson river, rural ($z_0 = 0.001$ to 1.5 m)
- Terrain complex terrain (river at 0 m, hill tops at 300 m)
- Met one year, mainly stable or unstable
- Release 145-m stack, SO₂, buoyant

Results – µg/m3



Hills validation – Lovett power plant

Scatter plot (left) and quantile-quantile plot (right) (µg/m³)

Modelled/observed ratios

Data	1-h max	3-h max	24-h max	annual mean	1-h RHC	3-h RHC	24-h RHC
ADMS 4	0.95	0.83	0.67	0.35	0.82	0.70	0.44
AERMOD '03	-	-	-	-	-	1.03	1.01

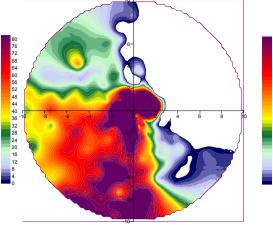
Conclusion - ADMS 4

- ADMS 4 was released in June 2007. It includes many new features and model improvements
- ADMS 4 results have been compared with measured data (a wide range of datasets, ADMS 3.3 (and AERMOD/ISC where available)
- ADMS 4 performance against data is improved compared with ADMS
 3.3 performance
- The detailed validation documents have been posted on www.cerc.co.uk
- Input and output data are available on request
- Validation is an ongoing activity

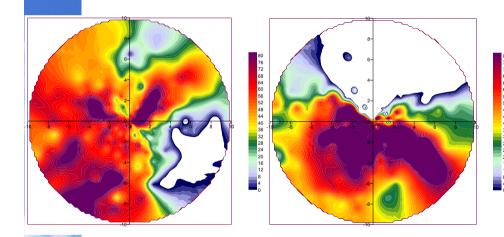
Features of ADMS-Airport

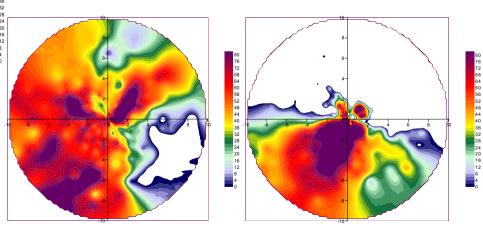
- An extension of ADMS-Urban Gaussian type model nested in regional trajectory model
- Includes chemical reaction scheme, meteorological preprocessor, Monin-Obukhov and mixed layer scaling for boundary layer structure
- Allowance for up to 6500 sources: road (1500, each with up to 50 vertices), point, line area and volume (1500), grid sources (3000) and up to 500 runway sources (exhaust modelled as moving jets)
- Other airport features
 - Hour by hour time varying data
 - Multi-segment line sources e.g. taxi ways
 - GIS link displays line, volume and runway sources


Features: Modelling exhausts as moving jets and impact of wake vortices


- Models engine exhausts as moving jet sources
- As the aircraft accelerates
 - buoyancy and emissions increasingly spread along the runway
 - the exhaust jet sees a faster ambient wind speed, this affects the plume rise
- The plume from the faster aircraft rises less than that from a slower aircraft
- Tested for the impact wake vortices may have on jet plume rise – reduce buoyancy

Measured v ADMS modelled

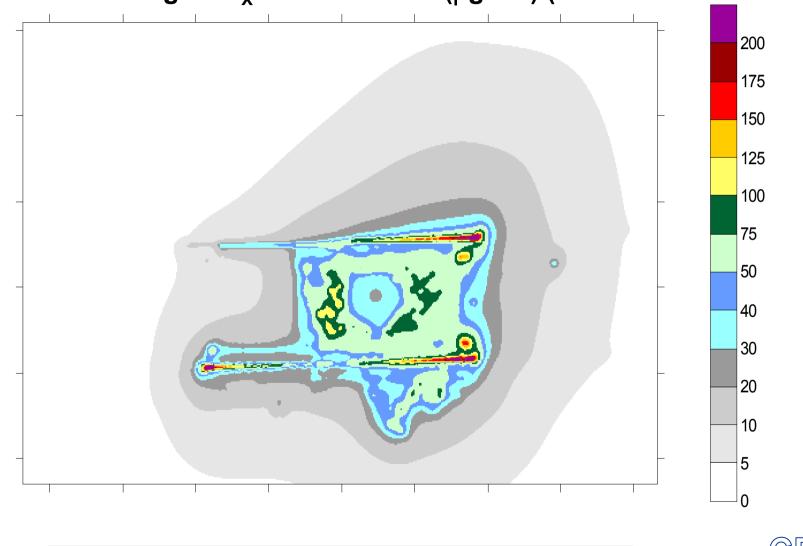



Measured v Model 2

Measured LHR2

CERC predicted

Measured v Model 3

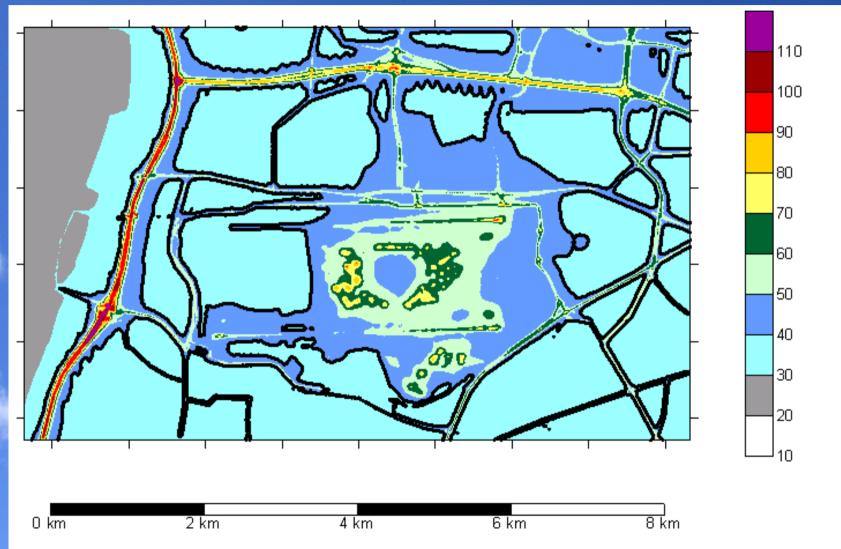


<u>Polar plots</u> of NO_x at LHR2 with background concentrations subtracted. Radius: <u>wind speed</u> in m/s.

Source apportionment: Aircraft sources

6 km

4 km


0 km

2 km

8 km

Contours: Annual Average NO₂

Conclusion - ADMS-Airports

- ADMS-Airports is to be released this autumn
- The model has undergone extensive comparison with measured data at Heathrow including exacting diagnostic tests
- The model was recommended for future modelling work at Heathrow airport by the PSDH technical panels.

