Developments in dispersion modelling over different spatial scales

Jenny Stocker, Christina Hood, David Carruthers & Christine McHugh

> UK Dispersion Model Users' Group Meeting Friends House Euston, London 5th December 2011

Cambridge Environmental Research Consultants Environmental Software and Services

Contents

- Motivation
- CMAQ overview
- CMAQ/ADMS-Urban nesting system
- Preliminary modelling
 - Model set up
 - Model results
- Summary
- Future work

CERC

Motivation

• Why nest a local model within a regional model?

Model feature	Model	
	Regional (eg grid based)	Local (eg Gaussian plume)
Domain extent	Country (few 1000 km)	City (50km)
Meteorology	Spatially and temporally varying from meso scale models	Usually spatially homogeneous
Dispersion in low wind speed conditions	Models stagnated flows correctly	Limited modelling of stagnated flows
Deposition and chemical processes	Reactions over large spatial and temporal scales	Simplified reactions over short-time scales
Source resolution	Low	High
Validity	Background receptors	Background, roadside and kerbside receptors

CERC

DMUG 2011

Motivation

- Why nest a local model within a regional model?
- What are the advantages of a nested model?

Model feature	Model					
	Regional (eg grid based)	Local (eg Gaussian plume)				
Domain extent	Country (few 1000 km)	City (50km)				
Meteorology	Spatially and temporally varying from meso scale models	Usually spatially homogeneous				
Dispersion in low wind speed conditions	Models stagnated flows correctly	Limited modelling of stagnated flows				
Deposition and chemical processes	Reactions over large spatial and temporal scales	Simplified reactions over short-time scales				
Source resolution	Low	High				
Validity	Background receptors	Background, roadside and kerbside receptors				

CMAQ overview

- Community Multiscale Air Quality modelling system
- Originally developed by the US Environmental Protection Agency (EPA), now supported by CMAS (Community Modelling and Analysis System)
- Open-source model that runs on Unix operating systems, with a command line and script-based user interface
- Grid-based (Eulerian) model
- Highest resolution typically 1-3km
- Meteorology from MM5 or WRF meso-scale models
- Emissions processing via SMOKE (US) or gridded data directly into I/O Applications Programming Interface (API) format
- Data visualisation in VERDI (Visualisation Environment for Rich Data Interpretation)

CERC

DMUG 2011

CMAQ overview CMAQ output concentration data shown in VERDI

• Aim: to nest local model in regional model without double counting emissions i.e.:

CERC

DMUG 2011

CMAQ/ADMS-Urban nesting system

• Aim: to nest local model in regional model without double counting emissions i.e.:

Concentration within nested domain

Regional = modelling of emissions

Gridded locally of - modelled s emissions (ΔT)

y Explicit locally + modelled

- emissions (ΔT)
- ADMS-Urban steady-state Gaussian plume model allows plumes to disperse for times > 1 hour, whilst limiting calculations to 1 hour i.e.:

 Assumption valid if variation in meteorology and emissions relatively slow from hour to hour.

CERC

• Aim: to nest local model in regional model without double counting emissions i.e.:

Concentration within nested domain	=	Regional modelling of emissions	-	Gridded locally modelled emissions (ΔT)	+	Explicit locally modelled emissions (ΔT)
ADMC Lirbon ato	o du d	atata Caucaiar	امد			nlumon to

 ADMS-Urban steady-state Gaussian plume model allows plumes to disperse for times > 1 hour, whilst limiting calculations to 1 hour i.e.:

- Assumption valid if variation in meteorology and emissions relatively slow from hour to hour.
- When nesting ADMS-Urban in a regional model, ensure that the locally modelled emissions (gridded and explicit) are **truncated** (- -) at the correct time.

CERC

DMUG 2011

CMAQ/ADMS-Urban nesting system

Emissions data

CERC

CERC

DMUG 2011

CMAQ/ADMS-Urban nesting system

CERC

CERC

DMUG 2011

CMAQ/ADMS-Urban nesting system

CERC

CERC

DMUG 2011

CMAQ/ADMS-Urban nesting system

Preliminary modelling Model set up

- Simplified model set up
- Domain:
 - Regional model : south east England
 - Local model : ~ congestion charging zone in central London
- Emissions:
 - London Atmospheric Emissions Inventory (detailed) and UK National Atmospheric Emissions Inventory (1 km² grid)
 - Only emissions of NO_x, NO₂ and ozone
 - Emissions from large point sources neglected
- Meteorology
 - Output from the meso-scale model MM5
 - 2 x 5 day periods (summer, winter)

CERC

DMUG 2011

Preliminary modelling Model set up: NO₂ emissions

Preliminary modelling Model set up

- Simplified model set up
- · Regional model:
 - Domain 120 km by 120 km, centred on nested domain
 - Emissions were aggregated onto 3 by 3 km² grid cells
 - All emissions released within the lowest layer of CMAQ vertical grid
 - Simplified initial and boundary conditions
 - CB-05 version 5 aerosol mechanism and aqueous chemistry
- Local model
 - Domain 9 km by 9 km
 - Emissions from all major roads modelled explicitly
 - Source-receptor travel time/mixing time ΔT limited to 2 hours

CERC

DMUG 2011

Preliminary modelling Model results

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background

Preliminary modelling Model results

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- · Validity of nesting:

Concentration within nested domain = r	Regional nodelling of - emissions	Gridded locally modelled emissions (ΔT)	+	Explicit locally modelled emissions (ΔT)
---	---	---	---	--

CERC

DMUG 2011

Preliminary modelling Model results

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

Concontration within		Regional	Gridded locally		Explicit locally
	=	modelling of -	modelled	$^+$	modelled
nesteu uomain		emissions	emissions (ΔT)		emissions (ΔT)

Preliminary modelling Model results

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

Concentration within nested domain	=	Regional modelling of emissions	-	Gridded locally modelled emissions (ΔT)	+	Explicit locally modelled emissions (ΔT)
Model results at receptors:						
 ADMS-Urban nested within CMAQ 						
 CMAQ only 						

- ADMS-Urban only

Preliminary modelling Model results: receptors – NO₂

(Summer)

CERC

DMUG 2011

Preliminary modelling Model results: receptors – O₃

(All sites)

CERC

Preliminary modelling Model results

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

Concentration within		
nested domain	=	

Regional modelling of emissions

Gridded locally modelled + emissions Explicit locally modelled emissions

- Model results at receptors:
 - ADMS-Urban nested within CMAQ
 - CMAQ only
 - ADMS-Urban only
- Contour output:
 - ADMS-Urban nested within CMAQ

CERC

DMUG 2011

Preliminary modelling Model results: NO₂ average contours

Summary

- Consistent methodology for nesting local model within a regional model
- Preliminary model results encouraging, despite simplifications
- This approach allows for modelling of:
 - chemical reactions over large and small temporal and spatial scales
 - spatially varying meteorology
 - low wind conditions
 - local modelling (street canyons, noise barriers, cuttings etc)
- Model validation at *all* sites: background, roadside and kerbside

CERC

DMUG 2011

Future work

- Nesting in other regional models, eg. EMEP4UK for Defra model inter-comparison study (collaboration with CEH)
- Greater integration and automation of nesting system
- Inclusion of elevated point sources
- Extension to model aerosols (particulates)
- Improved boundary and initial conditions for regional model
- Larger regional modelling domain
- Multiple nesting levels in regional modelling

CERC

Any questions?

CERC