

GENESIS

GENeric European Sustainable Information Space for Environment

Proposal 223996 - DG-INFSO Call FP7-ICT-2007-2

Clany 19th i

CERC/ICSTM/UWS WP2300

- Major EU 7th Framework ICT project to develop open software tools for environment and health (2008-2011)
- London pilot: CERC, Imperial College, UWS.
- Air quality → exposure + dose response → health impact

Congression ...

CERC/ICSTM/UWS WP2300

WHAT IS GENESIS ABOUT?

- GENESIS is an EU 7th Framework Programme project.
- It has run for 3 years from September 2008
- It is headed up by French company Thales
- The title is: ICT for Environmental Management and Energy Efficiency Collaborative Systems for Environmental Management
- It is a large-scale integrating project
- The aim is to produce <u>open, generic, useful tools</u> for environmental and health applications. The open tools will use a computing power at Thales.
- To define and test out the tools there are "**Thematic**" projects on water and air quality.
- There is a London-based air quality Thematic project.

Canada in the second se

CERC/ICSTM/UWS WP2300

THE LONDON THEMATIC PROJECT

- Partners
 - Cambridge Environmental Research Consultants
 - Imperial College of Science Technology and Medicine (John Gulliver, Gioia Mosler)
 - University of the West of Scotland Yang Wang
- What exists already?
 - Spatially detailed plots of concentration, typically maximum hourly concentration for 1 day or daily average. Time information understood by system.
 - STEMS, Space-Time Exposure Modelling System
 - a modelling system, theoretical and GIS-based non-GUI, partly developed scripts
 - Not in any user domain and accessible to one or two researchers
- What will be developed & by whom
 - CERC
 - More detailed time resolution of input to concentration modelling <u>e.g. near real time</u>
 <u>traffic data</u> and increased concentration output e.g. serious of hourly plots
 - UWS
 - Develop STEMS into a fully-fledged exposure assessment software for the public GENESIS OUTPUT

Canada Andrews

CERC/ICSTM/UWS WP2300

What exists already? Spatially detailed concentration data

What exists already? Spatially detailed concentration data

CERC/ICSTM/UWS WP2300

What exists already? STEMS, Space-Time Exposure Modelling System

Canada A

London Pilot – Use Cases

LONDON PILOT (AQ2, CERC/ICSTM/UWS WP2300)

UC1: Long-term exposure & health impact scenario

Existing technologies: STEMS

Consortium

Existing technologies: STEMS

STEMS-Activity

GTAD

Probabilities
based on
national or
local timeactivity
surveys

Example for child still at 'Home' at 08.15

Random =
$$0.6962$$

Selected activity at time 08.30 = 'School'; therefore child is modelled as travelling from home to school between 08.15 and 08.30;

the limited travelling time (<15 minutes) constrains the choice of destination

Time (end)	Home	School	Shops	Leisure	Travelling
08.00	0.00 - 0.85	0.85 – 0.87	0.87 – 0.89	0.89 – 0.90	0.90 – 1.00
08.15	0.00 - 0.75	0.75 – 0.82	0.82 - 0.84	0.84 – 0.85	0.85 – 1.00
08.30	0.00 - 0.65	0.65 – 0.75	0.75 – 0.79	0.79 – 0.80	0.80 – 1.00
08.45	0.00 - 0.30	0.30 - 0.60	0.60 - 0.65	0.65 – 0.70	0.70 – 1.00
09.00	0.00 - 0.02	0.02 - 0.90	0.90 - 0.90	0.90 - 0.90	0.90 – 1.00

CENTALLY.

CERC/ICSTM/UWS WP2300

What will be developed and by whom?

- [CERC] More detailed time resolution of input to concentration modelling e.g. near real time traffic data and increased concentration output e.g. series of hourly plots
- [UWS] Develop STEMS to make it operational, in a way that integrates with the GENESIS portal (possible parallel development in ArcGIS/ArcServer)
- [IT partners]
 - Data mining tools for large databases of various common formats
 - Definition of generic file formats
 - Rapid connection across the internet to datasets
 - Space-time co-registration tools
 - Make STEMS web-based
 - Possible output tools

CERC/ICSTM/UWS WP2300

The role of ICSTM

- Organise and implement field monitoring campaigns in London
- The results will be used to validate the use of STEMS with the high spatial-temporal resolution modelled concentration
- No new dose response function will be derived
- Health data at a level of a ward (~ 10,000 people) or less is not open for use
- ICSTM are involved in other projects in which the outputs are publicly available so there is likely to be synergy/added value

CERC/ICSTM/UWS WP2300

Why might it be of interest to the GLA?

- It will produce tools to calculate exposure and estimate health impacts of different air quality scenarios.
- By validating the system we can have confidence in testing out scenarios on the basis of air quality forecasts e.g. LEZ, Safer Routes to School etc.
- The tool is now at the demonstration stage

PROGRESS SO FAR

- [1] Long term exposure calculated from residential locations and long term average concentrations
- [2] Item [1] implemented in the GENESIS framework, ppt2
- [3] Work on time-activity-transport mode being developed, ppt3
- [4] Examples
 - Tower Hamlets, pupils routes to school
 - London-wide with/without LEZ

[1] ROAD NETWORK

[1] RESIDENTIAL DENSITY DATA

POSTCODE	WARD01	STWARD03	COA_CODE	SOA_CODE	DISTRICT01	POPULATION	HOUSEHOLDS	X_COORD	Y_COORD	
KT207BY	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	3	0	525282	152648.00001	
KT207EY	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	7	3	524087	152695.00001	
KT207BD	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	3	3	524905	152742.00001	
KT207HL	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	27	9	523883	152767.00001	Γ
KT207BT	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	10	4	525454	152788	Г
KT207BG	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	30	15	525105.00001	152829.99999	Г
RH1 4QU	43UKFY	43UKFY	43UKFY0008	E01030815	43UK	29	8	532845	152836.00001	Г
KT207BP	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	3	3	525289	152837.99999	Г
KT207BH	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	36	12	525214.00001	152859.00001	Г
KT207ET	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	10	5	524043.00001	152870.99999	Г
KT207BL	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	15	7	525255.99999	152888	Γ
KT207HQ	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	19	6	523853	152916.00001	Γ
KT207EJ	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	7	0	524466	152938.00001	Γ
RH1 4QX	43UKFY	43UKFY	43UKFY0008	E01030815	43UK	26	3	533548.99999	152939.00001	Γ
KT206XL	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	26	14	525708.00001	152963.99999	Γ
RH1 4QT	43UKFY	43UKFY	43UKFY0008	E01030815	43UK	34	12	532915	153026.99999	Г
KT207DX	43UFGB	43UFGB	43UFGB0011	E01030590	43UF	92	36	524641.00001	153089.99999	Г
RH9 8DH	43UKGD	43UKGD	43UKGD000	E01030825	43UK	21	6	534983.00001	153105.99999	Г
KT207ES	43UFGB	43UFGB	43UFGB0010	E01030590	43UF	13	7	524001	153111.00001	Г
KT207EF	43UFGB	43UFGB	43UFGB0011	E01030590	43UF	23	8	524765.00001	153159.99999	Г
KT207EQ	43UFGB	43UFGB	43UFGB0011	E01030590	43UF	13	4	524710.00001	153167.99999	Г
KT207EW	43UFGB	43UFGB	43UFGB0011	E01030590	43UF	66	33	524615	153194	Г
CR3 6ES	43UKGE	43UKGE	43UKGE0003	E01030828	43UK	21	9	533595.00001	153205.00001	Г
KT207AW	43UFGB	43UFGB	43UFGB0011	E01030590	43UF	10	5	524861.00001	153227	
RH1 4QY	43UKFY	43UKFY	43UKFY0008	E01030815	43UK	6	3	532699.99999	153227	Γ
	-10		III		7		7/			

[1] POINT EXPOSURE DATA

POPULATION	HOUSEHOLDS	X_COORD	Y_COORD	NO2_PLUS	PM10_PLUS	NO2_BASE	PM10_BASE	NO2_DIFF	PM10_DIFF
3	0	525282	152648.00001	17.3	0.95	18.2	1.03	0.9	0.08
7	3	524087	152695.00001	9.3	0.49	9.91	0.53	0.61	0.04
3	3	524905	152742.00001	10.5	0.53	11.1	0.57	0.6	0.04
27	9	523883	152767.00001	4.43	0.23	4.79	0.26	0.36	0.02
10	4	525454	152788	13.42	0.68	14.22	0.73	0.8	0.05
30	15	525105.00001	152829.99999	8.74	0.43	9.28	0.47	0.54	0.03
29	8	532845	152836.00001	18.4	0.99	19.4	1.07	1	0.08
3	3	525289	152837.99999	9.32	0.47	9.89	0.5	0.57	0.03
36	12	525214.00001	152859.00001	8.57	0.43	9.1	0.46	0.53	0.03
10	5	524043.00001	152870.99999	4.52	0.23	4.85	0.25	0.33	0.02
15	7	525255.99999	152888	8.24	0.41	8.75	0.44	0.51	0.03
19	6	523853	152916.00001	3.2	0.17	3.46	0.18	0.26	0.01
7	0	524466	152938.00001	5.8	0.29	6.19	0.31	0.39	0.02
26	3	533548,99999	152939.00001	11.6	0.56	12.2	0.61	0.6	0.04
26	14	525708.00001	152963.99999	23.68	1.59	25.04	1.71	1.36	0.12
34	12	532915	153026.99999	10	0.48	10.6	0.52	0.6	0.04
92	36	524641.00001	153089.99999	0	0	0	0	0	0
21	6	534983.00001	153105.99999	15.6	0.84	16.5	0.91	0.9	0.07
13	7	524001	153111.00001	0	0	0	0	0	0
23	8	524765.00001	153159.99999	0	0	0	0	0	0
13	4	524710.00001	153167.99999	0	0	0	0	0	0
66	33	524615	153194	0	0	0	0	0	0
21	9	533595.00001	153205.00001	0	0	0	0	0	0
.10	5	524861.00001	153227	4.55	0.23	4.86	0.25	0.31	0.02
6	3	532699.99999	153227	7.55	0.35	8.02	0.38	0.47	0.03
6	3	536481	153242	7.96	0.37	8.47	0.4	0.51	0.03
18	8	524803	153254.99999	4.33	0.22	4.63	0.23	0.3	0.02
18	5	532824.00001	153313	0	0	0	0	0	0
0	9	E3E043 00000	150000	4 05	0.26	E 40	0.27	n 22	0,00

[1] MAPPED DIFFERENCE IN NO2 EXPOSURE

Consortium

[1] DIFFERENCE IN NO2 EXPOSURE

Change in NO₂
concentrations
between the
"without" scenario
minus the "with"
scenario for NO₂
concentrations at
postcode level under
the LEZ

Change in NO2 concentrations (ug/m3) at postcode level

