Dispersion modelling of small CHP and boilers in urban areas

Catheryn Price

APRIL Emissions Modelling and Measurements subgroup meeting 21st March 2013 GLA, London

CERC

Cambridge Environmental Research Consultants
Environmental Software and Services

Contents

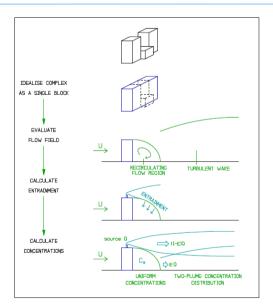
- · Modelling biomass/CHPs/district heating overview
- Issues for dispersion modelling
- Representing an urban area in ADMS
- Buildings effects in ADMS
- · Example modelling studies

Overview

- Note: This talk is from the point of view of a consultant using ADMS (also training and helpdesk), not as a model developer
- Increasing installation of 'small' CHP/biomass/district heating in urban areas, including London
- Relatively large 'energy centres' built on large building complexes (schools, colleges, hospitals) in an urban situation
- Use of ADMS 5 in urban areas previously unusual combination
 - Stack dispersion is key
 - · Stack downwash effects
 - · Building effects
 - Usually no modelling of roads required (it's the buildings module, not the street canyon module that's key)

CERC

Some issues for dispersion modelling


- Tend to be amongst sensitive receptors, in built-up areas
 - Need to account for urban topography
 - Modelling of buildings always required
 - Receptors can be very close to the stack and are often elevated
- Development project team often unfamiliar with air quality issues
 - Potential to miss important details, e.g. building layouts, receptors
- Have high, very spatially-variable background concentrations
- Consultancies often have separate teams doing urban and industrial modelling – this type of modelling is a hybrid

Representing an urban area in ADMS

- · Account for city in several ways:
 - Inherently through use of local met data (e.g. Heathrow)
 - High surface roughness length (r₀)
 - Set a minimum Monin-Obukhov length (L_{MO})
 - For both r₀ and L_{MO}, 'dispersion site' values can be set to be different to met site values
- Then only have to consider immediate buildings for explicit modelling: common approach even for industrial sites
- · Only tend to include:
 - buildings nearest/attached to sources
 - and/or buildings that will have greatest effect on dispersion (tallest/largest)

CERC

Buildings module in ADMS

Buildings module in ADMS: Validation

```
• Buildings
   o CERC, 2011: Alaska North Slope tracer study. □ (.pdf, <1MB)
   o CERC, 2011: Bowline point site. ☐ (.pdf, <1MB)
   o CERC, 2011: EOCR study. ☐ (.pdf, <1MB)
   o CERC, 2011: Lee power plant wind tunnel study. ☐ (.pdf, <1MB)

    CERC, 2011: Millstone nuclear power plant. 
        □ (.pdf, <1MB)</li>

   o CERC, 2011: Robins and Castro wind tunnel experiments. ☐ (.pdf, <1MB)
   • CERC, 2011: Snyder wind tunnel experiments. 
☐ (.pdf, <1MB)

    ○ CERC, 2011: Warehouse fires wind tunnel experiments.
    □ (.pdf, <1MB)</li>

· Buildings & complex terrain

    CERC, 2011: Baldwin power plant. 
        <sup>1</sup> (.pdf, <1MB)</li>

   o CERC, 2011: Martins Creek steam electric station. 
☐ (.pdf, <1MB)
· Complex terrain
   o CERC, 2011: Clifty Creek power plant. 	☐ (.pdf, <1MB)
   o CERC, 2011: Hogback Ridge tracer experiments. ☐ (.pdf, <1MB)
   o CERC, 2011: Lovett power plant. ☐ (.pdf, <1MB)

    CERC, 2011: Westvaco corporation.
    □ (.pdf, <1MB)</li>

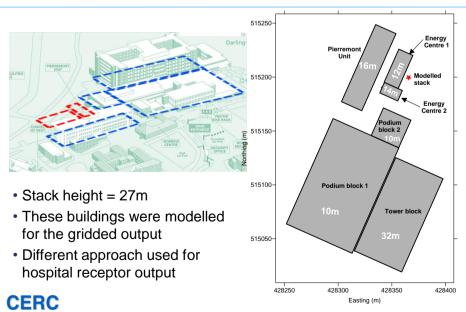
    Flat terrain

   o CERC, 2011: Kincaid, Indianapolis and Prairie Grass experiments. U (.pdf, 1MB)
```

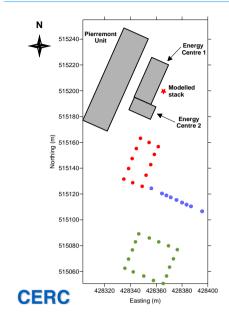
CERC

Buildings module in ADMS: Extra information

- There are model output files that help in the understanding and checking of building effects assumptions and calculations (useful for sensititivity tests):
 - The dimensions of the effective building assumed for each wind direction
 - The region affected by the presence of the modelled buildings
 - The dimensions of the building recirculation region (cavity)
 - The residence times of the pollutants within the cavity
 - The fraction of pollutant entrained into the cavity
 - The concentration of the pollutants in the cavity
 - A description of the flow (e.g. whether the flow remains separated, or reattaches)


Example modelling study

- Modelling of emissions from a proposed energy centre on a hospital site, including CHP
- Sensitive receptors:
 - in nearby residential areas
 - within the hospital buildings
- Included a stack height assessment



CERC

Modelled buildings for residential receptors

Modelled buildings for elevated receptor points


- Tower block facade
 - 7 different heights
 - From 2m to 24m above ground level
 - Represent windows
- Tower block plant
 - All at 34m above ground
 - Represent air intake vents
- Theatre plant room
 - All at 10m above ground
 - Represent air intake vents

Accounting for background concentrations

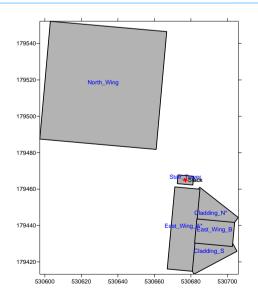
- How to account for 'process contribution' (PC) plus background?
- Could model the surrounding roads, etc
 - but usually impractical
- · Can report the PC values
 - Others can then 'add' this PC to any existing contour maps
- Can use planning guidance from Environmental Protection UK*
 - Includes a section on descriptors for the impacts of a development
 - Impacts can be described based on PC values (without explicitly accounting for the background concentrations)

^{*}Development Control: Planning for Air Quality (2010 Update)

Example: Annual mean NO₂ over ground level grid

Another example: St. Thomas' Hospital

- CERC modelled a radioactive release from St. Thomas' Hospital
- · Radionuclides are produced for the PET Centre
- Plans to fit cladding to one of the buildings
 - Concerns about changes to the aerodynamic properties of an existing discharge point


Wind tunnel modelling

- Wind tunnel modelling was carried out
- At Enflo, University of Surrey
- Modelled different stack heights and meteorological conditions

CERC

ADMS modelling

Some final thoughts

- Sensitivity tests try it!
- Communication
- · Question all data and information provided
- Combine industrial and urban modelling skills and experience
- Background data is an average value reasonable?
 - Roads
 - Car parks
 - Other hot-spots?

CERC

Thank you.

Any questions?