An evaluation of ADMS-Urban model performance using real-world emissions estimates

Jenny Stocker

ADMS-Urban & ADMS-Roads User Group Meeting
12th November 2015
Manchester

Contents

- Project background
- ADMS-Urban model configuration
 - Emissions
 - Meteorology
 - Background concentrations
 - Road parameters
 - Receptor network
- ADMS-Urban model results
 - NO_x, NO₂ and O₃
 - PM₁₀ and PM_{2.5}
- Lessons learnt

Project background

- NERC-funded project 'CureAir':
 - Coupled Urban and Regional processes: Effects on AIR quality (project reference NE/M003906/1)
- Partners
 - School of GeoSciences, University of Edinburgh
 - School of Chemistry, University of Leeds
 - CERC
 - Centre for Ecology & Hydrology (CEH), Edinburgh
- Work Packages:
 - WP1: Create a modelling framework for simulating regional to local air quality
 - WP2: Detailed evaluation from field measurements and 0-D MCM for London
 - WP3: Evaluation of UK-wide decadal coupled model simulations of air quality
 - WP4: Quantifying weather-sensitive chemistry processes during recent heatwaves
 - WP5: Assessing the impact of climate change on future O₃ and PM events

Project background

- CERC involvement:
 - Develop and validate a regional to local scale modelling system for 2002 2013
 - Focus on state-of-the-art chemistry at all scales
 - Assess the influence of the Urban Heat Island on pollutant concentrations:
 - Dispersion
 - Chemistry
 - Predict regional and local climate and pollution at the end of the century 2091 2100

Project background

- CERC involvement:
 - Develop and validate a regional to local scale modelling system for 2002 2013
 - Focus on state-of-the-art chemistry at all scales
 - Assess the influence of the Urban Heat Island on pollutant concentrations:
 - Dispersion
 - Chemistry
 - Predict regional and local climate and pollution at the end of the century 2091 2100
- Year 1:
 - Modify CERC's ADMS-Urban RML to run on the UK's national supercomputer used by academic institutions: ARCHER ✓
 - Compare the results of CERC's simplified GRS chemistry scheme (7 reactions) with those from the Master Chemical Mechanism (>10 000 reactions) ongoing
 - Validate ADMS-Urban for London 2012 ✓
 - Validate ADMS-Urban RML for London 2012 & then 2002 2011, 2013 ongoing

- Some published road traffic emission factors are not robust
- The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles:
 - Monitored NO_x & NO₂ not decreasing in line with emissions estimates
 - Real-world tailpipe measurements do not agree with vehicle manufacturer data

Vehicle type	Fuel / type	Euro class	Sample size	NO _x /CO ₂	NO ₂ / CO ₂	NO ₂ / NO _x %	
Passenger car	Petrol	0	204	85.1 ± 10.7	0.5 ± 0.4	0.6 ± 0.4	•
Passenger car	Petrol	1	392	54.1 ± 6.5	0.7 ± 0.3	1.3 ± 0.6	
Passenger car	Petrol	2	2848	39.3 ± 2.4	0.5 ± 0.1	1.4 ± 0.4	
Passenger car	Petrol	3	5593	15.3 ± 1	0.3 ± 0.1	2.1 ± 0.5	
Passenger car	Petrol	4	8843	10.3 ± 0.7	0.4 ± 0.1	4.1 ± 0.7	
Passenger car	Petrol	5	1998	4.8 ± 0.7	0.4 ± 0.1	8.4 ± 3	
Passenger car	Petrol hybrid	4	154	1.6 ± 1	0.2 ± 0.4	12.9 ± 27.8	
Passenger car	Petrol hybrid	5	605	7 ± 3.2	1.1 ± 0.4	15 ± 8.9	
Passenger car	Diesel	0	15	47 ± 8.7	7.2 ± 2	15.3 ± 5	
Passenger car	Diesel	1	62	55.7 ± 7.4	7.6 ± 1.5	13.7 ± 3.3	
Passenger car	Diesel	2	363	65.5 ± 4.1	5.7 ± 0.5	8.7 ± 0.9	
Passenger car	Diesel	3	2610	62.9 ± 1.5	10.3 ± 0.4	16.3 ± 0.8	
Passenger car	Diesel	4	5836	477 + 09	13.5 ± 0.4	284 + 09	
Passenger car	Diesel	5	New in	sights from co	mnrehensive (n-road meas	urement
London taxi	FX	2			•		
London taxi	Met	2	\mid of NO _x ,	NO ₂ and NH ₃ fr	om venicie en	nission remo	te sensır
London taxi	TX1	2	in	London, UK, D	avid C Carsla	w Glvn Rhvs-	Tvler
London taxi	Met	3		•		, ,	•
London taxi	TXII	3	Atm	ospheric Enviro	ninent, volume	o i, Decembe	2013
London taxi	MV111	4	594	64.1 ± 1.3	11.9 ± 0.9	18.6 ± 1.5	
London taxi	TX4	4	4719	49.2 ± 0.7	6 ± 0.3	12.3 ± 0.5	
London taxi	TX4	5	185	79.7 ± 7.4	15.8 ± 2	19.9 ± 3.2	
London taxi	MV113	5	329	62.9 ± 3.1	23.6 ± 1.2	37.6 ± 2.7	Meeting 20
Van (N1)		1	26	74.8 ± 14.6	9.3 ± 2.8	12.5 ± 4.5	

- Some published road traffic emission factors are not robust
- The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles:
 - Monitored NO_x & NO₂ not decreasing in line with emissions estimates
 - Real-world tailpipe measurements do not agree with vehicle manufacturer data
- By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor

Vehicle Type	Emission standard	s S	Remote ensing tandar ors (NO	Remote sensing primary NO ₂ (%)		
Diesel Car	Euro1		170		14	
	Euro2		175		9	
	Euro3		139		16	
	Euro4		134		28	
	Euro5		172		25	
HGV trucks	Euro2		136		21	
< 12 tonnes	Euro3		147		18	
	Euro4		214		8	
	Euro5		217		8	
HGV trucks	Euro2		144		12	
> 12 tonnes	Euro3		153		24	
	Euro4		206		3	
	Euro5		239		4	
Petrol Car	Euro1		376		1	
	Euro2		471		1	
	Euro3		343		2	
	Furo4	302			4	

CERC

eting 2015

- Some published road traffic emission factors are not robust
- The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles:
 - Monitored NO_x & NO₂ not decreasing in line with emissions estimates
 - Real-world tailpipe measurements do not agree with vehicle manufacturer data
- By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor
- These factors can be entered directly into EMIT

- Some published road traffic emission factors are not robust
- The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles:
 - Monitored NO_x & NO₂ not decreasing in line with emissions estimates
 - Real-world tailpipe measurements do not agree with vehicle manufacturer data
- By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor
- These factors can be entered directly into FMIT

- Some published road traffic emission factors are not robust
- The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles:
 - Monitored NO_x & NO₂ not decreasing in line with emissions estimates
 - Real-world tailpipe measurements do not agree with vehicle manufacturer data
- By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor
- These factors can be entered directly into EMIT
- Is it valid to use speedindependent adjustments?

In-service performance of Euro 6/VI vehicles – A summary of testing using London drive cycles, TfL, September 2015

- Some published road traffic emission factors are not robust
- PM₁₀ and PM_{2.5} road traffic emissions have a high non-exhaust component:
 - Traffic PM₁₀ emissions are ~ 75% non-exhaust
 - Traffic PM_{2.5} emissions are ~ 50% non-exhaust
 - Non exhaust emissions comprise brake, tyre and road wear, and resuspension of particulates on the road surface

Some published factors have coarse categorisation but have qualitatively correct

behaviour eg EMEP / CORINAIR factors

- Some published road traffic emission factors are not robust
- PM₁₀ and PM_{2.5} road traffic emissions have a high non-exhaust component:
 - Traffic PM₁₀ emissions are ~ 75% non-exhaust
 - Traffic $PM_{2.5}$ emissions are ~ 50% non-exhaust
 - Non exhaust emissions comprise brake, tyre and road wear, and resuspension of particulates on the road surface
- Some published factors have coarse categorisation but have qualitatively correct behaviour eg EMEP / CORINAIR factors
- But measurement component analyses at hotspots indicate non-exhaust component may be much higher, particularly for brake wear
- LAEI uses adjustment factors, calculated from measurements at Marylebone Road:
- These approximate factors can be included as adjustments to the base case

	Base method emissions g/km/s	Base method proportion	New method emissions g/km/s	New method proportion	Scaling factor (or emission change)
Exhaust	0.0227	0.54	0.0227	0.22	1.00
Tyre wear	0.0077	0.18	0.0084	0.08	1.09
Brake wear	0.0119	0.28	0.0431	0.42	3.63
Resuspension	-	-	0.0290	0.28	-

ADMS-Urban model configuration **Meteorology**

- Use Heathrow measured meteorology data, as prevailing wind from South West
- Wind speeds decrease in urban areas compared to rural / airport locations due to the presence of buildings
- ADMS-Urban allows for this decrease in wind speed, using 2 methods:

 Basic adjustment: Setting a different roughness length at the met site and the dispersion site

Using the Urban Canopy flow field option

ADMS-Urban model configuration **Meteorology**

- Use Heathrow measured meteorology data, as prevailing wind from South West
- Wind speeds decrease in urban areas compared to rural / airport locations due to the presence of buildings
- ADMS-Urban allows for this decrease in wind speed, using 2 methods:
 - Basic adjustment: Setting a different roughness length at the met site and the dispersion site
 - Using the Urban Canopy flow field option

Urban Canopy flow field

- Requires 3D buildings data as input
- ArcGIS Tools available to pre-process buildings data
- Model calculates the spatial variation of roughness length, giving a spatial variation of wind speed related to building density

ADMS-Urban model configuration **Meteorology**

- Use Heathrow measured meteorology data, as prevailing wind from South West
- Wind speeds decrease in urban areas compared to rural / airport locations due to the presence of buildings
- ADMS-Urban allows for this decrease in wind speed, using 2 methods:

 Basic adjustment: Setting a different roughness length at the met site and the dispersion site

Using the Urban Canopy flow field option

Urban Canopy flow field

 Requires 3D buildings data as input

 ArcGIS Tools available to pre-process buildings data

Model calculates the spatial variation of roughness
 length, giving a spatial variation of wind speed related to building density

ADMS-Urban model configuration Background

- Base case run: use measured data
- ADMS-Urban RML: upwind background taken from regional model
- Alternative approach to calculating background:
 - Minimum value over the domain

- Ensure that the NO_x, NO₂ and O₃ are from the same location for any

ADMS-Urban model configuration In-road parameters

- Many road and kerbside receptors are located within street canyons
- Wind flow and dispersion within 'street canyons' differs considerably from open road locations
- ADMS-Urban allows for street canyons, using 2 methods:
 - Basic canyons: add canyon height and width information in the model interface
 - Using the Advanced Canyon option

Advanced Canyon parameters

- Requires 3D buildings & road network data as input
- ArcGIS Tools available to pre-process data

Note:

An estimate of the road width is required, eg:

- Default based on road classification
- 0.7 x canyon width

Example comparison of

ADMS-Urban model configuration Receptor network

- 56 receptors
- Full range of receptor types modelled
- Validation for 2002 2013 for all pollutants except PM_{2.5} (from 2009)

2012 as 'pivot' year for emissions

	Roadside	Kerbside	Urban Background	Suburban	Total
NO _x	24	6	16	6	52
NO ₂	24	6	16	6	52
O ₃	8	1	13	4	26
PM ₁₀	21	5	13	5	44
PM _{2.5}	7	1	4	2	14

ADMS-Urban model configuration Receptor network

ADMS-Urban model results NO_x , NO_2 and O_3

NO_x urban background annual average concentrations before and

after adjustment

—1:1 line
---Within a factor of 4/3 of the observed

o COPERT 4 emission factors

Adjusted emission factors

Chang & Hanna, Air quality model performance evaluation. *Meteorol. Atmos. Phys.* **87**, 167–196 (2004)

ADMS-Urban model results NO_x , NO_2 and O_3

 NO_x annual average concentrations: all receptors for 2012 after adjustment

ADMS-Urban model results NO_x , NO_2 and O_3

 NO₂ and O₃ annual average concentrations: all receptors for 2012 after adjustment

—1:1 line ---Within a factor of 4/3 of the observed

ADMS-Urban model results PM_{10} and $PM_{2.5}$

 PM₁₀ and PM_{2.5} annual average concentrations before and after adjustment

- o Original emission factors
- Adjusted emission factors
- —1:1 line ---Within a factor of 4/3 of the observed

ADMS-Urban model results PM_{10} and $PM_{2.5}$

PM₁₀ and PM_{2.5} annual average concentrations before and after adjustment

-1:1 line ---Within a factor of 4/3 of the observed o Original emission factors

Adjusted emission factors

1.5

ADMS-Urban model results Final statistics for all pollutants, over all sites

Statistics relate to modelling for 2012 (ADMS-Urban 3.4.3)

Pollutant	Obs. mean	Mod. mean	NMSE	FB	R	FAC2
NO_x	110.7	105.7	0.72	- 0.05	0.70	0.72
NO ₂	49.8	49.9	0.28	0.002	0.71	0.83
O_3	33.1	33.0	0.24	- 0.001	0.77	0.67
PM ₁₀	23.8	22.1	0.36	- 0.08	0.63	0.88
PM _{2.5}	14.8	15.6	0.29	0.06	0.75	0.83
Perfect model	n/a	n/a	0.0	0.0	1.0	1.0

ADMS-Urban model results "Focus on state-of-the-art chemistry at all scales"

Assess model predictions on an hour-by-hour basis

ADMS-Urban model results "Focus on state-of-the-art chemistry at all scales"

Assess model predictions on an hour-by-hour basis

Lessons learnt

- Using adjustment factors based measurement data improves model performance...
- ...and may remove the need for post-modelling adjustment factors!

Modelling tips:

- When modelling chemistry, use upwind direction-dependent background concentrations
- To allow for flow field variations over the domain, use the urban canopy module
- To allow for complexities of dispersion in the urban areas, use the advanced canyon and tunnel model options
- Locate road / kerbside receptors on the pavement, within the canyon, at the correct distance from the kerb

