An evaluation of ADMS-Urban model performance using real-world emissions estimates #### **Jenny Stocker** ADMS-Urban & ADMS-Roads User Group Meeting 12th November 2015 Manchester #### **Contents** - Project background - ADMS-Urban model configuration - Emissions - Meteorology - Background concentrations - Road parameters - Receptor network - ADMS-Urban model results - NO_x, NO₂ and O₃ - PM₁₀ and PM_{2.5} - Lessons learnt #### **Project background** - NERC-funded project 'CureAir': - Coupled Urban and Regional processes: Effects on AIR quality (project reference NE/M003906/1) - Partners - School of GeoSciences, University of Edinburgh - School of Chemistry, University of Leeds - CERC - Centre for Ecology & Hydrology (CEH), Edinburgh - Work Packages: - WP1: Create a modelling framework for simulating regional to local air quality - WP2: Detailed evaluation from field measurements and 0-D MCM for London - WP3: Evaluation of UK-wide decadal coupled model simulations of air quality - WP4: Quantifying weather-sensitive chemistry processes during recent heatwaves - WP5: Assessing the impact of climate change on future O₃ and PM events #### **Project background** - CERC involvement: - Develop and validate a regional to local scale modelling system for 2002 2013 - Focus on state-of-the-art chemistry at all scales - Assess the influence of the Urban Heat Island on pollutant concentrations: - Dispersion - Chemistry - Predict regional and local climate and pollution at the end of the century 2091 2100 #### **Project background** - CERC involvement: - Develop and validate a regional to local scale modelling system for 2002 2013 - Focus on state-of-the-art chemistry at all scales - Assess the influence of the Urban Heat Island on pollutant concentrations: - Dispersion - Chemistry - Predict regional and local climate and pollution at the end of the century 2091 2100 - Year 1: - Modify CERC's ADMS-Urban RML to run on the UK's national supercomputer used by academic institutions: ARCHER ✓ - Compare the results of CERC's simplified GRS chemistry scheme (7 reactions) with those from the Master Chemical Mechanism (>10 000 reactions) ongoing - Validate ADMS-Urban for London 2012 ✓ - Validate ADMS-Urban RML for London 2012 & then 2002 2011, 2013 ongoing - Some published road traffic emission factors are not robust - The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles: - Monitored NO_x & NO₂ not decreasing in line with emissions estimates - Real-world tailpipe measurements do not agree with vehicle manufacturer data | Vehicle
type | Fuel /
type | Euro
class | Sample
size | NO _x /CO ₂ | NO ₂ /
CO ₂ | NO ₂ /
NO _x % | | |-----------------|----------------|---------------|-----------------------------|--|--------------------------------------|--|------------| | Passenger car | Petrol | 0 | 204 | 85.1 ± 10.7 | 0.5 ± 0.4 | 0.6 ± 0.4 | • | | Passenger car | Petrol | 1 | 392 | 54.1 ± 6.5 | 0.7 ± 0.3 | 1.3 ± 0.6 | | | Passenger car | Petrol | 2 | 2848 | 39.3 ± 2.4 | 0.5 ± 0.1 | 1.4 ± 0.4 | | | Passenger car | Petrol | 3 | 5593 | 15.3 ± 1 | 0.3 ± 0.1 | 2.1 ± 0.5 | | | Passenger car | Petrol | 4 | 8843 | 10.3 ± 0.7 | 0.4 ± 0.1 | 4.1 ± 0.7 | | | Passenger car | Petrol | 5 | 1998 | 4.8 ± 0.7 | 0.4 ± 0.1 | 8.4 ± 3 | | | Passenger car | Petrol hybrid | 4 | 154 | 1.6 ± 1 | 0.2 ± 0.4 | 12.9 ± 27.8 | | | Passenger car | Petrol hybrid | 5 | 605 | 7 ± 3.2 | 1.1 ± 0.4 | 15 ± 8.9 | | | Passenger car | Diesel | 0 | 15 | 47 ± 8.7 | 7.2 ± 2 | 15.3 ± 5 | | | Passenger car | Diesel | 1 | 62 | 55.7 ± 7.4 | 7.6 ± 1.5 | 13.7 ± 3.3 | | | Passenger car | Diesel | 2 | 363 | 65.5 ± 4.1 | 5.7 ± 0.5 | 8.7 ± 0.9 | | | Passenger car | Diesel | 3 | 2610 | 62.9 ± 1.5 | 10.3 ± 0.4 | 16.3 ± 0.8 | | | Passenger car | Diesel | 4 | 5836 | 477 + 09 | 13.5 ± 0.4 | 284 + 09 | | | Passenger car | Diesel | 5 | New in | sights from co | mnrehensive (| n-road meas | urement | | London taxi | FX | 2 | | | • | | | | London taxi | Met | 2 | \mid of NO _x , | NO ₂ and NH ₃ fr | om venicie en | nission remo | te sensır | | London taxi | TX1 | 2 | in | London, UK, D | avid C Carsla | w Glvn Rhvs- | Tvler | | London taxi | Met | 3 | | • | | , , | • | | London taxi | TXII | 3 | Atm | ospheric Enviro | ninent, volume | o i, Decembe | 2013 | | London taxi | MV111 | 4 | 594 | 64.1 ± 1.3 | 11.9 ± 0.9 | 18.6 ± 1.5 | | | London taxi | TX4 | 4 | 4719 | 49.2 ± 0.7 | 6 ± 0.3 | 12.3 ± 0.5 | | | London taxi | TX4 | 5 | 185 | 79.7 ± 7.4 | 15.8 ± 2 | 19.9 ± 3.2 | | | London taxi | MV113 | 5 | 329 | 62.9 ± 3.1 | 23.6 ± 1.2 | 37.6 ± 2.7 | Meeting 20 | | Van (N1) | | 1 | 26 | 74.8 ± 14.6 | 9.3 ± 2.8 | 12.5 ± 4.5 | | - Some published road traffic emission factors are not robust - The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles: - Monitored NO_x & NO₂ not decreasing in line with emissions estimates - Real-world tailpipe measurements do not agree with vehicle manufacturer data - By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor | Vehicle Type | Emission
standard | s
S | Remote
ensing
tandar
ors (NO | Remote
sensing
primary NO ₂
(%) | | | |--------------|----------------------|--------|---------------------------------------|---|----|--| | Diesel Car | Euro1 | | 170 | | 14 | | | | Euro2 | | 175 | | 9 | | | | Euro3 | | 139 | | 16 | | | | Euro4 | | 134 | | 28 | | | | Euro5 | | 172 | | 25 | | | HGV trucks | Euro2 | | 136 | | 21 | | | < 12 tonnes | Euro3 | | 147 | | 18 | | | | Euro4 | | 214 | | 8 | | | | Euro5 | | 217 | | 8 | | | HGV trucks | Euro2 | | 144 | | 12 | | | > 12 tonnes | Euro3 | | 153 | | 24 | | | | Euro4 | | 206 | | 3 | | | | Euro5 | | 239 | | 4 | | | Petrol Car | Euro1 | | 376 | | 1 | | | | Euro2 | | 471 | | 1 | | | | Euro3 | | 343 | | 2 | | | | Furo4 | 302 | | | 4 | | CERC eting 2015 - Some published road traffic emission factors are not robust - The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles: - Monitored NO_x & NO₂ not decreasing in line with emissions estimates - Real-world tailpipe measurements do not agree with vehicle manufacturer data - By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor - These factors can be entered directly into EMIT - Some published road traffic emission factors are not robust - The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles: - Monitored NO_x & NO₂ not decreasing in line with emissions estimates - Real-world tailpipe measurements do not agree with vehicle manufacturer data - By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor - These factors can be entered directly into FMIT - Some published road traffic emission factors are not robust - The recent VW vehicle scandal highlights the issue with NO_x emissions from diesel vehicles: - Monitored NO_x & NO₂ not decreasing in line with emissions estimates - Real-world tailpipe measurements do not agree with vehicle manufacturer data - By calculating the corresponding CO₂ emission factors, for each vehicle category, it is possible to estimate an adjustment factor - These factors can be entered directly into EMIT - Is it valid to use speedindependent adjustments? In-service performance of Euro 6/VI vehicles – A summary of testing using London drive cycles, TfL, September 2015 - Some published road traffic emission factors are not robust - PM₁₀ and PM_{2.5} road traffic emissions have a high non-exhaust component: - Traffic PM₁₀ emissions are ~ 75% non-exhaust - Traffic PM_{2.5} emissions are ~ 50% non-exhaust - Non exhaust emissions comprise brake, tyre and road wear, and resuspension of particulates on the road surface Some published factors have coarse categorisation but have qualitatively correct behaviour eg EMEP / CORINAIR factors - Some published road traffic emission factors are not robust - PM₁₀ and PM_{2.5} road traffic emissions have a high non-exhaust component: - Traffic PM₁₀ emissions are ~ 75% non-exhaust - Traffic $PM_{2.5}$ emissions are ~ 50% non-exhaust - Non exhaust emissions comprise brake, tyre and road wear, and resuspension of particulates on the road surface - Some published factors have coarse categorisation but have qualitatively correct behaviour eg EMEP / CORINAIR factors - But measurement component analyses at hotspots indicate non-exhaust component may be much higher, particularly for brake wear - LAEI uses adjustment factors, calculated from measurements at Marylebone Road: - These approximate factors can be included as adjustments to the base case | | Base method
emissions g/km/s | Base method proportion | New method
emissions g/km/s | New method proportion | Scaling factor
(or emission
change) | |--------------|---------------------------------|------------------------|--------------------------------|-----------------------|---| | Exhaust | 0.0227 | 0.54 | 0.0227 | 0.22 | 1.00 | | Tyre wear | 0.0077 | 0.18 | 0.0084 | 0.08 | 1.09 | | Brake wear | 0.0119 | 0.28 | 0.0431 | 0.42 | 3.63 | | Resuspension | - | - | 0.0290 | 0.28 | - | | | | | | | | # ADMS-Urban model configuration **Meteorology** - Use Heathrow measured meteorology data, as prevailing wind from South West - Wind speeds decrease in urban areas compared to rural / airport locations due to the presence of buildings - ADMS-Urban allows for this decrease in wind speed, using 2 methods: Basic adjustment: Setting a different roughness length at the met site and the dispersion site Using the Urban Canopy flow field option # ADMS-Urban model configuration **Meteorology** - Use Heathrow measured meteorology data, as prevailing wind from South West - Wind speeds decrease in urban areas compared to rural / airport locations due to the presence of buildings - ADMS-Urban allows for this decrease in wind speed, using 2 methods: - Basic adjustment: Setting a different roughness length at the met site and the dispersion site - Using the Urban Canopy flow field option #### **Urban Canopy flow field** - Requires 3D buildings data as input - ArcGIS Tools available to pre-process buildings data - Model calculates the spatial variation of roughness length, giving a spatial variation of wind speed related to building density # ADMS-Urban model configuration **Meteorology** - Use Heathrow measured meteorology data, as prevailing wind from South West - Wind speeds decrease in urban areas compared to rural / airport locations due to the presence of buildings - ADMS-Urban allows for this decrease in wind speed, using 2 methods: Basic adjustment: Setting a different roughness length at the met site and the dispersion site Using the Urban Canopy flow field option #### **Urban Canopy flow field** Requires 3D buildings data as input ArcGIS Tools available to pre-process buildings data Model calculates the spatial variation of roughness length, giving a spatial variation of wind speed related to building density #### **ADMS-Urban model configuration Background** - Base case run: use measured data - ADMS-Urban RML: upwind background taken from regional model - Alternative approach to calculating background: - Minimum value over the domain - Ensure that the NO_x, NO₂ and O₃ are from the same location for any ## ADMS-Urban model configuration In-road parameters - Many road and kerbside receptors are located within street canyons - Wind flow and dispersion within 'street canyons' differs considerably from open road locations - ADMS-Urban allows for street canyons, using 2 methods: - Basic canyons: add canyon height and width information in the model interface - Using the Advanced Canyon option #### **Advanced Canyon parameters** - Requires 3D buildings & road network data as input - ArcGIS Tools available to pre-process data #### Note: An estimate of the road width is required, eg: - Default based on road classification - 0.7 x canyon width **Example comparison of** ### ADMS-Urban model configuration Receptor network - 56 receptors - Full range of receptor types modelled - Validation for 2002 2013 for all pollutants except PM_{2.5} (from 2009) 2012 as 'pivot' year for emissions | | Roadside | Kerbside | Urban
Background | Suburban | Total | |-----------------------|----------|----------|---------------------|----------|-------| | NO _x | 24 | 6 | 16 | 6 | 52 | | NO ₂ | 24 | 6 | 16 | 6 | 52 | | O ₃ | 8 | 1 | 13 | 4 | 26 | | PM ₁₀ | 21 | 5 | 13 | 5 | 44 | | PM _{2.5} | 7 | 1 | 4 | 2 | 14 | ## ADMS-Urban model configuration Receptor network # ADMS-Urban model results NO_x , NO_2 and O_3 NO_x urban background annual average concentrations before and after adjustment —1:1 line ---Within a factor of 4/3 of the observed o COPERT 4 emission factors Adjusted emission factors Chang & Hanna, Air quality model performance evaluation. *Meteorol. Atmos. Phys.* **87**, 167–196 (2004) ## ADMS-Urban model results NO_x , NO_2 and O_3 NO_x annual average concentrations: all receptors for 2012 after adjustment # ADMS-Urban model results NO_x , NO_2 and O_3 NO₂ and O₃ annual average concentrations: all receptors for 2012 after adjustment —1:1 line ---Within a factor of 4/3 of the observed # ADMS-Urban model results PM_{10} and $PM_{2.5}$ PM₁₀ and PM_{2.5} annual average concentrations before and after adjustment - o Original emission factors - Adjusted emission factors - —1:1 line ---Within a factor of 4/3 of the observed #### **ADMS-Urban model results** PM_{10} and $PM_{2.5}$ PM₁₀ and PM_{2.5} annual average concentrations before and after adjustment -1:1 line ---Within a factor of 4/3 of the observed o Original emission factors Adjusted emission factors 1.5 # ADMS-Urban model results Final statistics for all pollutants, over all sites Statistics relate to modelling for 2012 (ADMS-Urban 3.4.3) | Pollutant | Obs.
mean | Mod.
mean | NMSE | FB | R | FAC2 | |-------------------|--------------|--------------|------|---------|------|------| | NO_x | 110.7 | 105.7 | 0.72 | - 0.05 | 0.70 | 0.72 | | NO ₂ | 49.8 | 49.9 | 0.28 | 0.002 | 0.71 | 0.83 | | O_3 | 33.1 | 33.0 | 0.24 | - 0.001 | 0.77 | 0.67 | | PM ₁₀ | 23.8 | 22.1 | 0.36 | - 0.08 | 0.63 | 0.88 | | PM _{2.5} | 14.8 | 15.6 | 0.29 | 0.06 | 0.75 | 0.83 | | Perfect
model | n/a | n/a | 0.0 | 0.0 | 1.0 | 1.0 | ### ADMS-Urban model results "Focus on state-of-the-art chemistry at all scales" Assess model predictions on an hour-by-hour basis ### ADMS-Urban model results "Focus on state-of-the-art chemistry at all scales" Assess model predictions on an hour-by-hour basis #### **Lessons learnt** - Using adjustment factors based measurement data improves model performance... - ...and may remove the need for post-modelling adjustment factors! #### **Modelling tips:** - When modelling chemistry, use upwind direction-dependent background concentrations - To allow for flow field variations over the domain, use the urban canopy module - To allow for complexities of dispersion in the urban areas, use the advanced canyon and tunnel model options - Locate road / kerbside receptors on the pavement, within the canyon, at the correct distance from the kerb