CERC

Modelling odours in ADMS 5

Catheryn Price

ADMS 5 User Group Meeting 11th November 2015 Manchester

Cambridge Environmental Research Consultants

Environmental Software and Services

Contents

- Introduction
- Odour guidance
- The 'FIDOL' framework for odour assessments
- Modelling odour
- Modelling tips
 - Modelling area sources and buildings
 - Modelling sources with low efflux velocities
 - Modelling odours with the AERMOD code in ADMS 5

Introduction

- We can recognise/distinguish thousands of different smells (around 10,000)
- But we're not very good at describing them
 - Don't have names for different smells (cf. colours)
- We tend to prefer scents that we can identify correctly
- We have around 5 million olfactory receptor neurons
 - Rabbits have around 100 million
 - Dogs have around 220 million
- Our olfactory receptors are directly connected to the most ancient and primitive part of the brain
 - Linked to emotions, memories
- We can respond to odour over a 1 to 5 second interval (a single breath)

Odour Guidance - general

- IAQM Guidance on the assessment of odour for planning (2014)
 - Not intended for regulatory purposes
- Environment Agency H4 guidance (2011)
 - For permitting purposes
- SEPA Odour guidance (2010)
 - Note: this is labelled as internal guidance
- Defra Odour guidance for Local Authorities (2010)
 - designed primarily for use by Environmental Health Practitioners
 - should also be useful to other local authority professionals, regulators and industry professionals who are engaged in any of the following: preventing, investigating and managing odours

Odour guidance: Specific sectors

- Good Practice and Regulatory Guidance on Composting and Odour Control for Local Authorities (2009)
- Code of Practice on Odour Nuisance from Sewage Treatment Works (2006)
- Defra Guidance on the control of odour and noise from commercial kitchen exhaust systems (2005)

Factors that affect the impact of odours: FIDOL

- A framework for assessing the impact of odours
- Frequency
- Intensity
- Duration
- Odour unpleasantness / Offensiveness
- Location

(Sometimes FIDOR, where R = receptor sensitivity)

- These are important concepts to bear in mind when modelling odour and interpreting the results of odour modelling
- Will go through each of these in turn...

FIDOL: Frequency

- "Frequency of detection" H4 guidance
- "How often an individual is exposed to odour" IAQM guidance
- Olfactory fatigue / adaptation:
 - An individual can get 'used to' the odour unable to detect the odour after a certain period
 - But if odour has an on/off/on pattern, this is disrupted
- Modelling/assessment implications:
 - Averaging time, peak-to-mean concentrations
 - Fluctuations module in ADMS could be used to investigate this
 - But the UK modelling criterion for odour assessments is prescribed:
 - 98th percentile of hourly average concentrations
 - 2% of the hours in a year (175 hours) can exceed the threshold in question

FIDOL: Intensity

- The strength of the odour
- More specifically, the *perception* of the strength of the odour
 - The relationship between a stimulus and the perceived strength is not necessarily linear (smell, noise, brightness, etc), e.g. Steven's power law
 - "The intensity of an odour is a logarithmic function of its concentration." H4 guidance
- Modelling / assessment implications:
 - The magnitude of the emission rates is key
 - Output concentrations
 - Contour plots

FIDOL: Duration

- Exposure duration
 - Hourly / daily / seasonal patterns of exposure
 - Length of particular odour 'episode'
- Modelling/assessment implications:
 - Related to 'frequency'
 - Hours of operation of process
 - Use of time-varying files in ADMS
 - Vary emission rates only (.fac file)
 - Vary emission parameters and emission rates (.var file)

FIDOL: Offensiveness / Odour unpleasantness

- Mixture of the character and the hedonic tone
- The character is the description, e.g. 'fishy', 'sweet'
- The hedonic tone is the 'acceptability'
 - Is it pleasant or unpleasant?
 - Landfill vs baking bread
- Modelling/assessment implications:
 - What thresholds to compare model output against?
- H4 Benchmark levels:

CERC

- 1.5 ou_E for most offensive odours
- 3 ou_E for moderately offensive odours
- 6 ou_E for less offensive odours

Which bracket does my source come under?

FIDOL: Offensiveness / Odour unpleasantness

- H4 guidance:
 - Most offensive
 - processes involving decaying animal or fish remains
 - processes involving septic effluent or sludge
 - biological landfill odours
 - Moderately offensive
 - intensive livestock rearing
 - fat frying (food processing)
 - sugar beet processing
 - well-aerated green waste composting
 - Less offensive
 - brewery
 - confectionery
 - coffee roasting
 - bakery

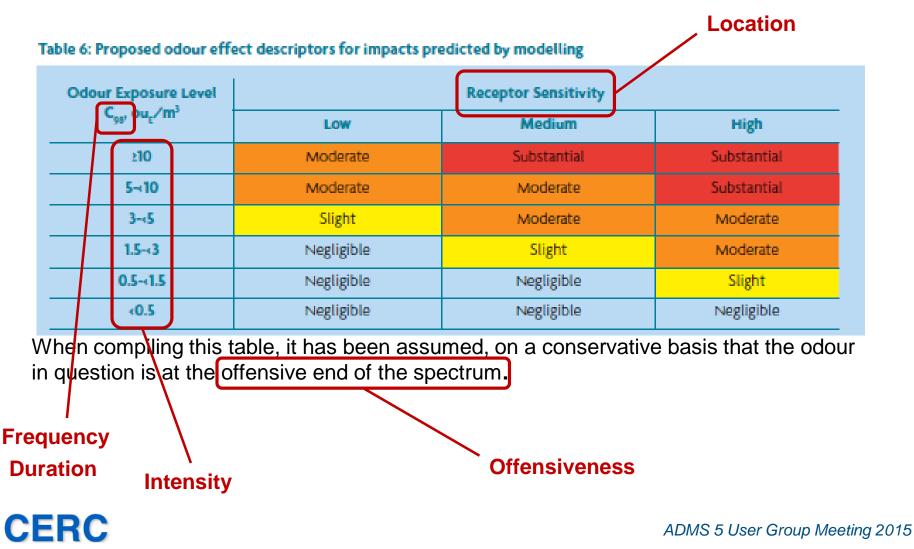
CERC

H4: "Most odours from the processes we regulate fall into [the 'moderately offensive'] category"

FIDOL: Location

- The nature of the surrounding area and sensitivity of nearby receptors
- Sensitivity of individuals: people have different detection thresholds
 - "Statutory nuisance uses the concept of the response of the average, reasonable person" Defra guidance
- What is the land use of the surrounding area?
 - Residential vs industrial
 - Urban vs rural
- Modelling implications:
 - Careful selection of sensitive receptors
 - Contour plots

FIDOL: Location


• IAQM guidance (summary of table 2):

Receptor sensitivity	Surrounding land where:	Examples	
High	Users can expect enjoyment of a high level of amenity Users present continuously/regularly for extended periods	Residential Hospitals Schools Tourism	
Medium	Users can expect reasonable enjoyment of a high level of amenity Users not present continuously/regularly for extended periods	Workplaces Commercial/retail Playing fields	
Low	The enjoyment of amenity not reasonably expected Transient exposure	Industrial Farms Footpaths Roads	

Combining FIDOL factors

• Example - IAQM guidance (summary of table 2):

Complicating factors - odour

- Often complex mixtures of compounds
 - Difficult to measure
 - Synergistic effects impact greater than the sum of its parts
 - Masking effects impact less than the sum of its parts
- Subjective what constitutes a 'nuisance'?
- Sources are often complex
 - Different types of sources
 - Often fugitive
 - Often transient
- Can be challenging to model...

Why use dispersion modelling?

- Ambient odours are difficult to measure
 - Human nose is highly effective at measuring odour
 - Sensitive, fast and can distinguish a wide range of compounds
 - Olfactometry is an important tool in odour assessment
 - Air samples 'measured' by a panel of selected human assessors
 - But olfactometry is used for determining odour emissions, not ambient concentrations
 - Direct measurements cannot usually be made at receptor locations – concentrations too low
 - 'Electronic noses' improving technology but still not widely used
- Useful at the planning and permitting stage of potentially odourous processes - the source is not yet present
- Can investigate possible mitigation measures abatement, etc

Modelling odours

 Simply switch on 'Odours' under Model Options

• Changes the units used throughout the model interface

			OMS 5 -	(untitle	d)				
		<u>F</u> ile	Run!	<u>R</u> esults	U <u>t</u> ilities	<u>H</u> elp			
	ſ		Set <u>u</u> p	Ľ	<u>S</u> ourc	e ľ	<u>M</u> eteorology	<u>ľ</u>	<u>B</u> ack <u>o</u>
				N	ame of site				
	Name of project								
Emissi	ions	-				() and (-		
	Source001								
⊢ Po	ollutan	it spe	cies —						
	Nev			ete					
		utant			mission rate				
N	Öx	atant	name	-	(ou_e/s) 1.00000e				
	<u> </u>			-	1.000000				
						_			
						_			
						_			
						_			
						_			
	Dallah		-1						
	Pollut	ants							(
Use tł	Use this button to add a new pollutant to this source								
							,	5	

Modelling odours

- In ADMS, there are two options for units when the Odours module is used: 'ou_e' and 'ou'
- The 'ou_e' is the CEN Standard European Odour Unit, ou_E
 - mass based
 - commonly used
- ou_E is simply a mass unit
- Could carry out the same model run using g/s as input and g/m³ as output
- (The other option in ADMS, 'ou', is an older, volume based, type of unit, now rarely used)

Modelling odours

- Not all odour modelling is about complex mixtures and ou_E values
- Some processes involve a single (or a single dominant) compound, so ou_E not required, e.g:
 - Industrial processes
 - Paint spraying
 - Hydrogen sulphide as a marker compound for Waste Water Treatment processes
- Usually simply use g/s and g/m³ in these situations
- Specific compounds will have specific odour detection threshold values

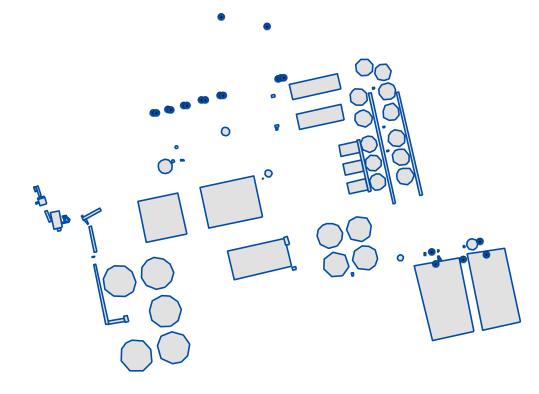
Modelling challenges and uncertainties

- Defining source terms can be challenging:
 - Emission rates and parameters
 - Are they representative?
 - Do they represent a 'snapshot'?
 - Temporal profiles
 - Are these predictable?
 - e.g. site only operational during the day
- Can have many sources of odour on a site, with different characteristics
- e.g. waste water treatment plants:
 - Point / area / volume sources
 - Different emission rate
- Sensitivity tests

CERC

Meteorological data

- Met data run several years to cover variability
- "At least three, preferably five" H4 guidance
- IAQM guidance recommends five
- Much discussion of the occurrence of odour episodes during periods of low wind speeds - calm conditions
 - In ADMS 5, hours with wind speed (at 10m) less than 0.75m/s are not modelled
 - The .log file tells you how many hours represent calm conditions:


SUMMARY OF MET DATA: INFO : Number of met lines used = 8695 INFO : Number of met lines with calm conditions = 15 INFO : Number of met lines with inadequate data = 50

- Consider using the 'calms' option in ADMS
- Accounts for the variable wind direction during calm conditions

Modelling odour: source types

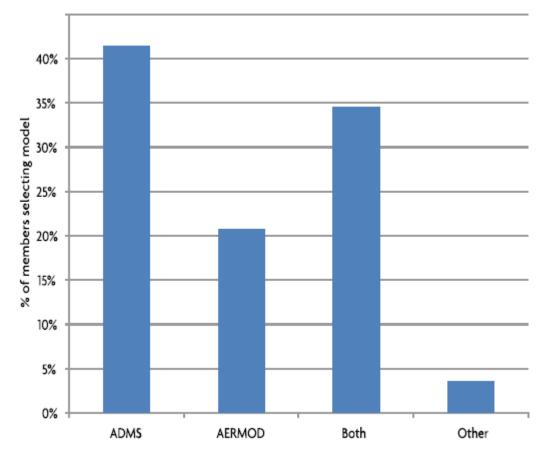
- Point sources
 - Stacks
 - Vents
- Area sources
 - Settlement tanks
 - Sludge storage areas
 - Landfill sites

- Volume sources
 - Fugitive emissions from buildings
 - Through building fabric or through several vents/windows/doors

Tips: Modelling area sources with buildings

- Modelling area sources without building effects is fine
- You can't model the effect of buildings on area sources
- If the sources are on the building itself, consider using a volume source
- If you want to consider the effect of nearby buildings on an area source:
 - Model the area source as an array of point sources
 - There is a Helpdesk note on this
 - There are two competing factors to consider when determining the best representation of the area source:
 - a) Near source configuration, and concentration distribution
 - b) Plume rise behaviour
 - Generally, for passive or low plume rise cases, focus on (a)
 - For high plume rise cases, focus on (b)

Tips: Modelling low velocity releases


- Many sources of odour have very low efflux rates
- Low velocity / volume flow rate
- Fugitive emissions, emission from tanks etc
- To ensure that buoyancy effects are taken into account, make sure that the velocity is not set to zero
- Use a very small value instead, e.g. 0.2m/s
- If the release is at ambient conditions, set the temperature to be 'ambient' in the source table
 - Will pick up the temperature values from the .met file

Tips: Modelling odour with AERMOD code

- IAQM guidance:
- "In a recent survey in preparation for this guidance, members were asked which model they would select for an odour assessment"
- "Odour assessments are almost exclusively undertaken in the UK using the AERMOD or ADMS models"

Figure 3: Percentage of IAQM members selecting each dispersion model option.

Tips: Modelling odour with AERMOD code

- Can't use odour units when running AERMOD in ADMS
- As mentioned previously, ou_E are just mass units, so can simply use g/s as input and g/m³ as output ('odours' module switched off)
- AERMOD has prescriptive limits on emission rate values
 - Values measured in OU_E are often very large
 - Sometimes values of odour units can be outside the AERMOD permitted range
 - ADMS will give an error message: "ConvertAERMODOutput: Problem reading AERMOD Period file."
 - A solution is to divide the emission rates by a certain factor such as 1000 (and remember to convert the output concentrations back!)

Thank you for listening

Any questions?

ADMS 5 User Group Meeting 2015