

Stephen Smith

ADMS-Urban & ADMS-Roads User Group Meeting

10th November 2016

London

Contents

- Motivation
- Theory & model overview
- Model applications
- Case Study: London
 - Model configuration:
 - Source data (land use & anthropogenic data)
 - Meteorological data
 - Model domain & receptor network
 - Model results:
 - Absolute temperatures
 - Temperature perturbations
 - Heat maps
- Summary

Motivation

- Local governments are increasingly interested in green infrastructure, knowing it can lead to:
 - elevated community health and well-being
 - improvements in air quality
 - reductions in the impact on the local climate
- Urban areas can have a large effect on the local climate, increasing the temperature; known as the Urban Heat Island (UHI)
- New developments can be designed, constructed and operated with minimal impact on the local climate
- Increasingly, the impact of new developments on local climate are considered alongside the impacts on air quality
- ADMS-Urban has been developed to model changes in the local climate due to land use and anthropogenic heat emissions allowing a joined up approach to planning assessments

Theory & model overview

- Urban fabric and morphology influences climate
- Climate variations: local & city scale
- Meteorological conditions change:
 - Wind speeds reduce

- due to high building densities
- Turbulent mixing increases_
- Boundary layer height increases due to the increase in turbulent mixing
- Urban fabric retains more heat & has less moisture than rural areas alters heat flux balance
- Pollutant dispersion is influenced by meteorological variations. Also:
 - Chemical reaction rates are temperature dependent (e.g. ozone production)
 - UHI temperature increases alter relative plume buoyancy

Theory & model overview

 The surface energy balance equation defines how much heat is available at the surface to be converted into surface sensible and latent heat:

 Surface sensible heat flux, together with friction velocity and temperature, define the upwind profile

Theory & model overview

To date, primarily research applications

- Hamilton I, Stocker J, Evans S, Davies M and Carruthers D,
 2014: The impact of the London Olympic Parkland on the urban heat island. Journal of Building Performance
 Simulation, 7, issue 2
- Virk G, Jansz A, Mavrogianni A, Mylona A, Stocker J and Davies M, 2014: The effectiveness of retrofitted green and cool roofs at reducing overheating in a naturally ventilated office in London: Direct and indirect effects in current and future climates. Indoor and Built Environment.
- Virk G, Jansz A, Mavrogianni A, Mylona A, Stocker J and Davies M, 2015: Microclimate effects of green and cool roofs in London and their impacts on energy use for a typical office building. Energy and Buildings, 88, pp 214-228
- Maggiotto G, Buccolieri R, Santo M A, Leo L S and Di Sabatino S, 2014: Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environmental Modelling and Software, 60, pp. 69-83
- Maggiotto G, Buccolieri R, Santo M A, Leo L S and Di Sabatino S, 2014: Study of the urban heat island in Lecce (Italy) by means of ADMS and ENVI-MET. Int. J. of Environment and Pollution, 55, pp. 41-49

To date, primarily research applications

- Hamilton I, Stocker J, Evans S, Davies M and Carruthers D, 2014: The impact of the London Olympic Parkland on the urban heat island. Journal of Building Performance Simulation, 7, issue 2
- Virk G, Jansz A, Mavrogianni A, Mylona A, Stocker J and Davies M, 2014: The effectiveness of retrofitted green and cool roofs at reducing overheating in a naturally ventilated office in London: Direct and indirect effects in current and future climates. Indoor and Built Environment.
- Virk G, Jansz A, Mavrogianni A, Mylona A, Stocker J and Davies M, 2015: Microclimate effects of green and cool roofs in London and their impacts on energy use for a typical office building. Energy and Buildings, 88, pp 214-228
- Maggiotto G, Buccolieri R, Santo M A, Leo L S and Di Sabatino S, 2014: Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environmental Modelling and Software, 60, pp. 69-83
- Maggiotto G, Buccolieri R, Santo M A, Leo L S and Di Sabatino S, 2014: Study of the urban heat island in Lecce (Italy) by means of ADMS and ENVI-MET. Int. J. of Environment and Pollution, 55, pp. 41-49

Modelling local climate mitigation scenarios

Daily temperature variations on green and cool roof compared to 'normal' roof

Normal roof (run 1-Basecase)

— Green roof (run 6-All potential roofs greened)

Dry green roof (run 8-All potential roofs greened, all dry)

—— Cool roof (run 9-All potential roofs cool roofs)

Difference between green roof and normal roof

Difference between cool roof and normal roof

------ Difference between dry green roof and normal roof

To date, primarily research applications

- Hamilton I, Stocker J, Evans S, Davies M and Carruthers D,
 2014: The impact of the London Olympic Parkland on the urban heat island. Journal of Building Performance Simulation, 7, issue 2
- Virk G, Jansz A, Mavrogianni A, Mylona A, Stocker J and Davies M, 2014: The effectiveness of retrofitted green and cool roofs at reducing overheating in a naturally ventilated office in London: Direct and indirect effects in current and future climates. Indoor and Built Environment.
- Virk G, Jansz A, Mavrogianni A, Mylona A, Stocker J and Davies M, 2015: Microclimate effects of green and cool roofs in London and their impacts on energy use for a typical office building. Energy and Buildings, 88, pp 214-228
- Maggiotto G, Buccolieri R, Santo M A, Leo L S and Di Sabatino S, 2014: Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: the Lecce (IT) case study. Environmental Modelling and Software, 60, pp. 69-83
- Maggiotto G, Buccolieri R, Santo M A, Leo L S and Di Sabatino S, 2014: Study of the urban heat island in Lecce (Italy) by means of ADMS and ENVI-MET. Int. J. of Environment and Pollution, 55, pp. 41-49

Temperature maps for two sites in Lecce, Italy where ADMS model output is compared to ENVI-met 20:00 on 10/08/2012

27.6

27.2

26.8

26.4

25.2

24.8 24.4 24

26 25.6

City-scale modelling & comparisons to other models

CERC

- To date, primarily research applications
- The Temperature & Humidity module will be available* as part of ADMS-Urban 4.1 for commercial applications
 - Currently being used by Barcelona Regional to model the Barcelona Urban Heat Island
 - Used for climate modelling in 'Coupling Regional and Urban processes: Effects on Air Quality' project (NERC)

*extended licence required

within each ward

Input data derived from **buildings data**: Roughness • Use 3-D buildings data to calculate Normalised building volume parameters λ_{p} and λ_F (ArcGIS tools) Buildings anthropogenic heat Use typical heat ADMS Mapper emission rates (W/m^2) Domestic & nondomestic building density © Crown Copyright and Database Right 2015. Ordnance Survey (Digimap Licence) Colours are of nondomestic buildings

- Input data derived from road traffic data:
 - Road traffic anthropogenic heat

Meteorological data:

- Standard ADMS met data parameters
- Temperature & humidity values must be upwind (cf. pollutant background data)
- Upwind measurement heights above sea level required as input
- London: 5 stations used

Case Study: London Model configuration: model domain & receptor network

Model domain:

- 80 km x 65 km, Greater London
- Land-use calculations use 'FLOWSTAR' internal grid (e.g. 256 x 256 → 312 m x 234 m)

Receptor network:

- Measurement sites
- Full receptor network (regular & source-oriented grids)

Case Study: London Model results

- Absolute temperatures:
 - Box and whisker plot
 - Frequency scatter plots
- Temperatures perturbations
 - Box and whisker plot
 - Average diurnal profiles
- August and January 2012
- Note
 - Calculation grid resolution may not resolve land use inputs
 - Unrefined receptor locations

Case Study: London Model results: absolute temperatures

- Absolute temperatures (August 2012)
 - Box and whisker plot
 - The 'box' shows the 25th, 50th and 75th percentiles*

Case Study: London Model results: absolute temperatures

- Absolute temperatures (August 2012):
 - Frequency scatter plots of hourly temperatures
 - How does it compare to just using upwind temperatures?

Case Study: London Model results: temperature perturbations

- Temperature perturbations (August 2012)
 - Very good performance at some sites
 - Negative temperatures not displayed

Case Study: London

Model results: temperature perturbations

Case Study: London Model results: temperature perturbations

- Temperature perturbations (January 2012)
 - Good performance at all sites
 - Negative temperatures not displayed

Example satellite image of land surface temperature (June 2011)

Example modelled temperature ~ 3.0 m (August 2012)

Example daily variations (August 2012)

ADMS-Urban & ADMS-Roads User Group Meeting 2016

- Example daily UHI variations
- Street-scale resolution contour model output for planning

Example daily UHI variations

Street-scale resolution contour model output for planning

Model validation at all site types e.g. data from

wunderground.com File Edit View History Bookmarks Tools Help

WunderMap® | Interactive... x © CERC, Environmental soft... x +

Summary

- ADMS-Urban 4.1 will include a 'Temperature & Humidity' module*
- Good model performance at the city scale
- Ongoing projects to validate at the local scale
- As for air quality, ADMS-Urban is able to model hourly temperature and humidity variations to a high spatial resolution
- Applications include:
 - Planning applications
 - Climate change mitigation scenarios
 - UHI modelling

*extended licence required

Any questions?

