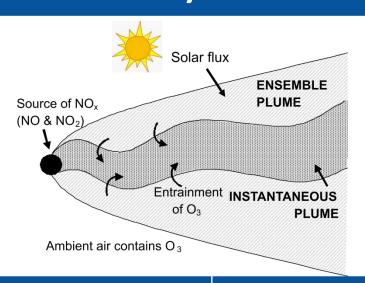
#MO09 Evaluation of explicit NO_x chemistry methods in AERMOD using a new compressor station dataset

Dr. Jenny Stocker

Guideline on Air Quality Models: *Planning Ahead*

19-21 March 2019

Durham, North Carolina


CERC

Background

- For some industrial installations, demonstrating compliance with the 1-hour NO₂ National Ambient Air Quality Standard (NAAQS) using AERMOD can be difficult.
- AERMOD Tier 3 chemistry methods, OLM (Ozone Limiting Method) and PVMRM (Plume Volume Molar Ratio Method), can predict overly conservative concentration values for some model configurations.
- A new explicit NO_x chemistry method for AERMOD 'Atmospheric Dispersion Modelling System Method' (ADMSM) has been implemented in a previous version of AERMOD. ADMSM was evaluated using available NO₂ databases (Empire Abo, Palaau, Wainwright and Prudhoe Bay)*.
- This presentation provides results of additional ADMSM assessment using a new compressor station evaluation dataset.

^{*} Carruthers, D.J.; Stocker, J.R.; Ellis, A.; Seaton, M.D.; Smith, S.E., Evaluation of an explicit NOx chemistry method in AERMOD; Journal of the Air and Waste Management Association. 2017, 67:6, 702-712

Chemistry schemes

NO_x chemistry

'Ozone titration'

 $NO + O_3 \rightarrow NO_2 + O_2$

100% conversion

Neglects

Limited entrainment

(volume-based approach)

into instantaneous plume

Neglects reaction rates;

assumptions relating to

entrainment method

'Photolysis'

 NO_2 + sunlight $\rightarrow NO + O_3$

Fast reactions (seconds minutes)

Explicit calculation

Explicit calculation

Limited entrainment (cross-

sectional area-based

approach) into

instantaneous plume

Reaction rates; assumptions

relating to entrainment

method

Item	The state of the s	Molar Ratio Method)	ADMSM (ADMS Method)	
Hourly background	03	O_3	O ₃ , NO _x , NO ₂	

100% conversion

Neglects

Fully entrained into

ensemble plume

Full entrainment into

ensemble plume so

upper bound for NO₂

Method for 'O₃ titration'

Method for 'photolysis'

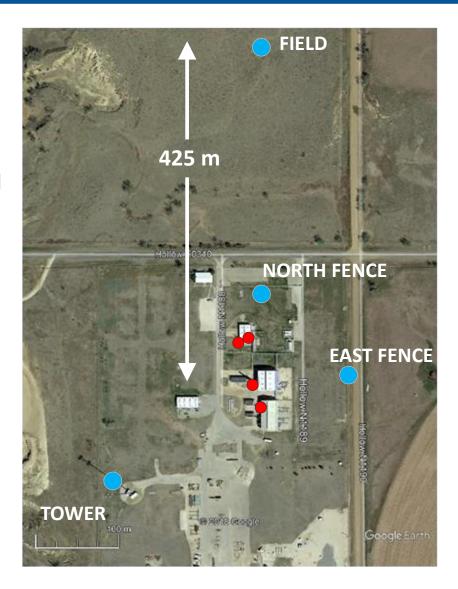
Method for entrainment

inaccuracy of predicted

of O₃ into the plume

Main sources of

NO₂

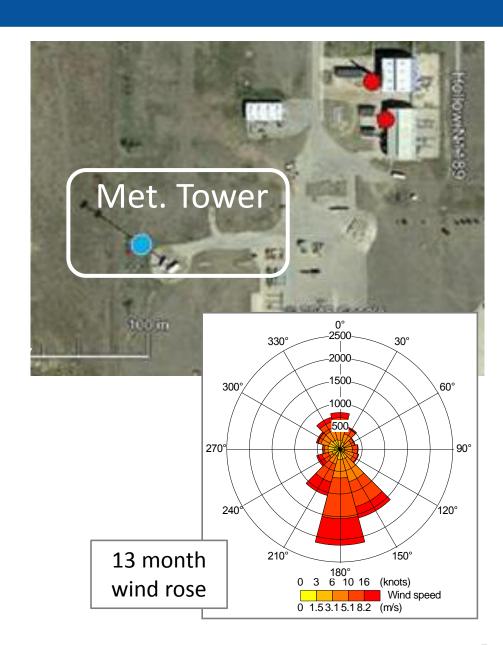

Campaign set up

13 month campaign (Dec. 2015 – Dec. 2016)

Flat, scrubby grassland

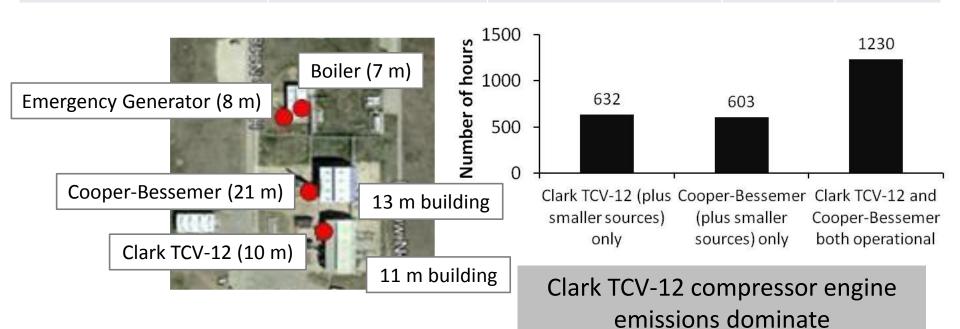
- 4 main NO₂ sources:
- 2 compressor engine stacks
- 1 boiler
- 1 emergency generator

Meteorological instruments on 30 m tower


Parametric Emissions Monitoring Systems (PEMS) recorded hourly engine parameters (compressor engines only)

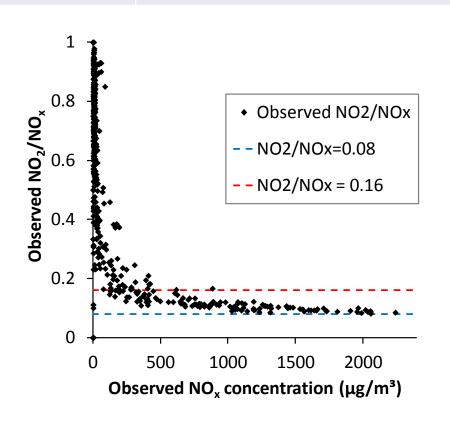
- 4 monitors:
- 'North Fence' and 'Field' in alignment with the stacks and the prevailing wind
- 'East Fence'
- 'Tower'

Buildings adjacent to compressor engine stacks of similar height to one of the stacks


Meteorological data

- Recorded wind speed, wind direction, temperature, solar radiation, pressure, precipitation and humidity
- Standard deviation of the horizontal wind direction (sigma theta) derived from 1-minute wind direction data
- •2 m, 10 m and 30 m measurements
- Good quality data:
 - On-site
 - Away from significant buildings
 - Located to record prevailing conditions

Source and emissions data


Source	No. operational hours (out of 9528)	Av. NO _x emission rate when operational (g/s)	Exit Temp. (°C)	Exit vel. (m/s)
Clark TCV-12 comp. engine	1862	12.8	316	17.4 (average)
Cooper-Bessemer comp. engine	1833	1.75	277	19.8
Boiler (with rain cap)	5134	0.062	427	10.9
Emergency generator (EG)	86	0.29	538	13.1

In-stack ratios

Source	Supplied in-stack ratio	Modelled in-stack ratio		
Clark TCV-12 comp. engine	0.16 (PEMS)	0.08 (ambient monitoring data)		
Cooper-Bessemer comp. engine	0.3 (PEMS)	0.3 (PEMS)		
Boiler	0.1	0.1		
Emergency generator (EG)	0.1	0.1		

- This is a scientific evaluation study not a regulatory assessment
- Consider ambient monitoring data from the closest monitor with the highest frequency and magnitude of concentrations (North Fence)
- Filter data for when the Cooper-Bessemer is not operational
- Minimum NO₂/NO_x asymptotes to 0.08

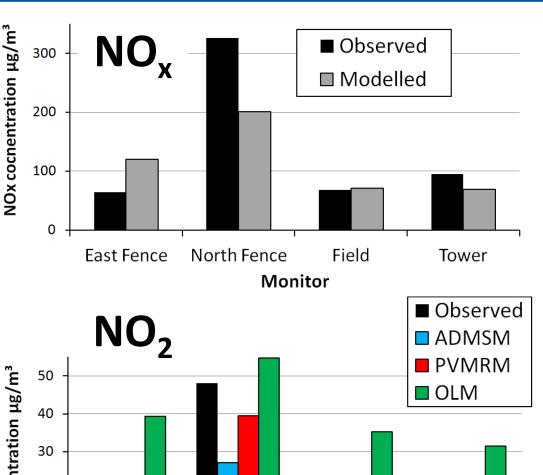
Analysis methodology

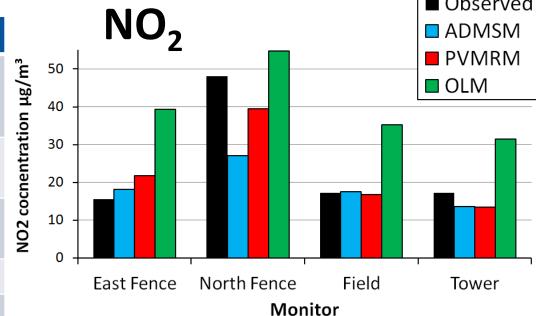
- Analyse NO_x performance then analyse NO₂ performance:
 - Are the predictions of NO_2 consistent with NO_x ? (e.g., if NO_x is overpredicted then NO_2 should also be overpredicted, and vice versa.)
 - Are the NO₂ predictions consistent with the chemistry scheme formulation?
- Consider:
 - Statistics
 - Quantile-quantile (Q-Q) plots
 - Variation of the ratio of modelled to observed NO_2 against ratio of modelled to observed $NO_{\rm v}^{\ *}$
- Analyse data where emissions are high and the wind advects from the source(s) to the monitor(s); i.e., filter by wind direction

^{*} Smith, S.; Stocker, J.; Seaton, M.; Carruthers, D., Model inter-comparison and validation of ADMS plume chemistry schemes; International Journal of Environment and Pollution. 2017, 62(2-4), 395-406.

Statistical results: average concentrations

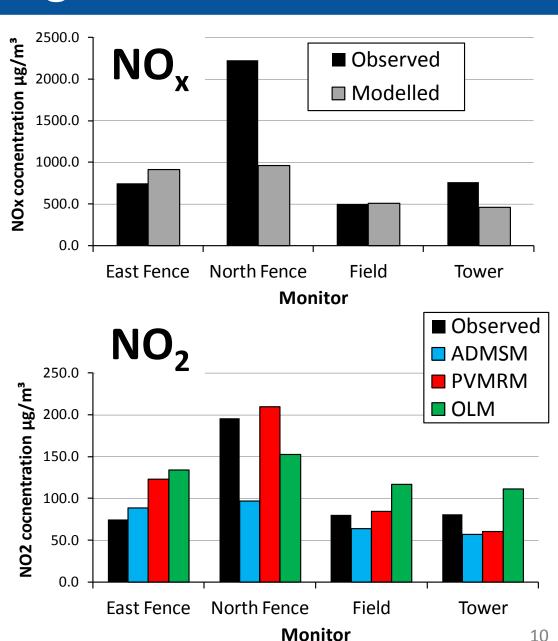
Tables: data paired in space and time


• NO_x performance

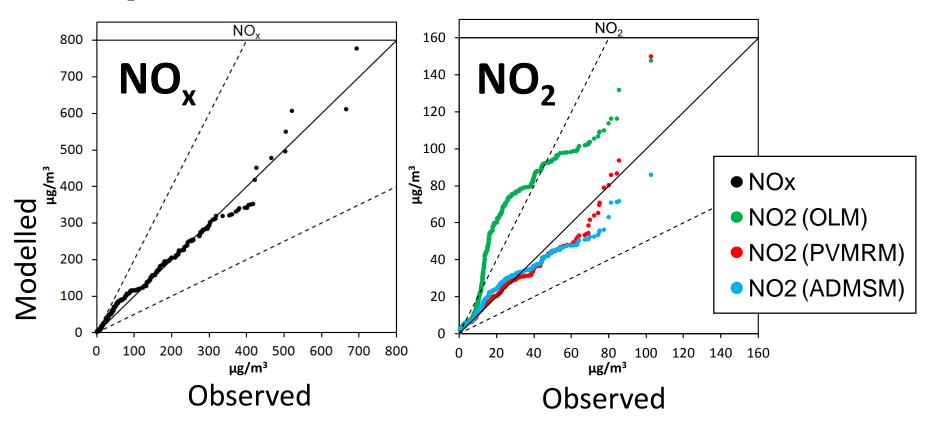

Monitor	N	R	Fac 2
East Fence	238	0.67	0.54
North Fence	803	0.57	0.45
Field	576	0.59	0.51
Tower	149	0.47	0.45

• NO₂ performance

<u>Underline</u> performance better than NO,


 '						Х
	R			Fac 2		
Monitor	ADMSM	PVMRM	OLM	ADMSM	PVMRM	ОГМ
East Fence	<u>0.71</u>	<u>0.73</u>	0.61	<u>0.68</u>	<u>0.73</u>	0.51
North Fence	<u>0.57</u>	0.39	0.50	<u>0.57</u>	<u>0.54</u>	<u>0.53</u>
Field	<u>0.61</u>	0.45	<u>0.62</u>	<u>0.70</u>	<u>0.64</u>	0.50
Tower	<u>0.56</u>	<u>0.50</u>	<u>0.59</u>	<u>0.58</u>	<u>0.54</u>	<u>0.49</u>

Statistical results: high concentrations

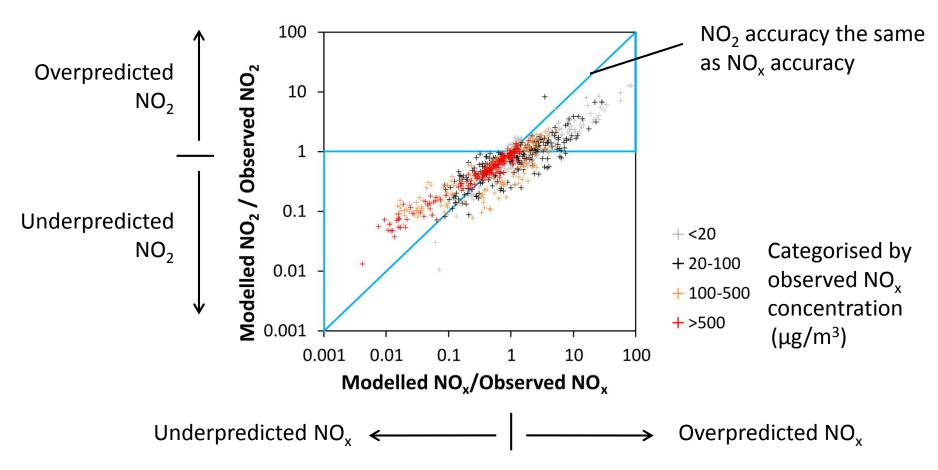

- Consider:
 - the ratio of modelled to observed mean: highest 10 values
- ADMSM shows more consistency between NO_x and NO_2 concentrations than other schemes e.g. modelled NO_x at North Fence less than half observed value, so modelled NO_2 should be significantly under-predicted

Quantile-quantile plots

Field

- Clark TCV-12 distance to monitor: 425 m
- PVMRM and ADMSM NO₂ broadly consistent with NO_x
- High NO₂ PVMRM values higher than corresponding ADMSM values

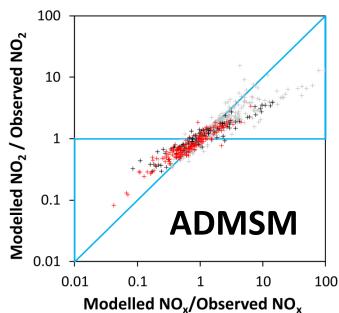
Quantile-quantile plots

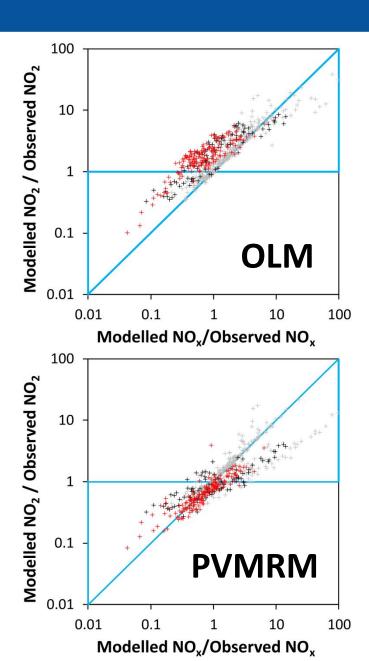

North Fence

- Clark TCV-12 distance to monitor: 140 m
- ADMSM NO₂ broadly consistent with NO_x

• PVMRM NO₂ higher than corresponding NO_x and exceed OLM concentrations for some values

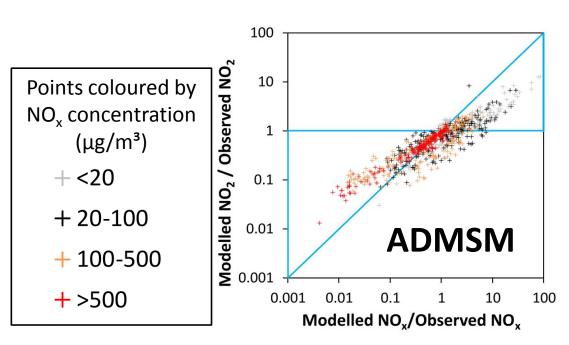


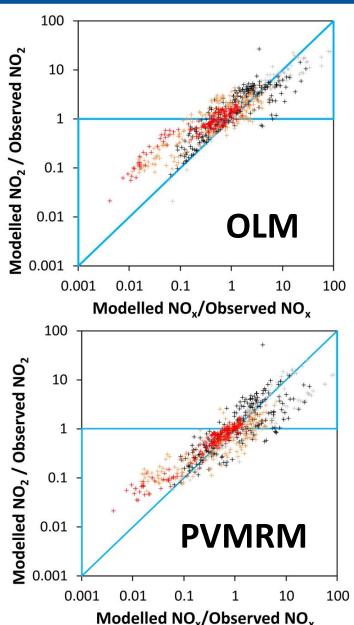

- If NO_x is overpredicted then NO_2 should also be overpredicted, but not by quite so much due to the non-linearity in the chemical equations, and vice versa
- Consider Modelled NO₂ / Observed NO₂ against Modelled NO_x / Observed NO_x



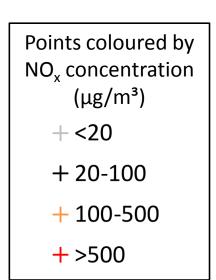
Field

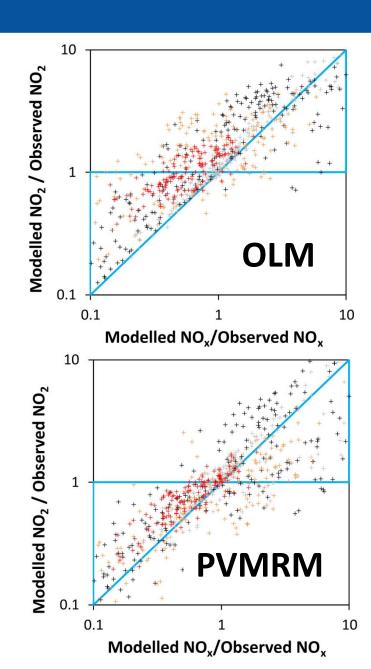
- Clark TCV-12 distance to monitor: 425 m
- ADMSM values better aligned with blue triangles than PVMRM
- Some under-prediction of PVMRM for high NO₂ concentrations (red points)
- Clear over-prediction of NO₂ relative to NO_x for OLM





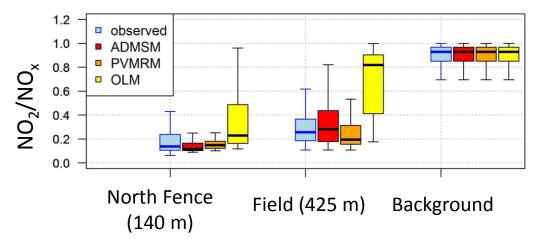
North Fence


- Clark TCV-12 distance to monitor: 140 m
- ADMSM and PVMRM much better aligned in the blue triangles than OLM



North Fence

- Clark TCV-12 distance to monitor: 140 m Zooming in to NO_x values within a factor of 10
- ADMSM has a tighter grouping of high concentration values (representing better R)
- PVMRM has some high NO_2 predictions that correspond to low-moderate NO_x concentrations (seen on Q-Q plot)



Conclusions (1 of 2)

- Superior dataset for evaluation of NO_x chemistry schemes, with short source to monitor distances, and two monitors aligned with the prevailing wind.
- NO_x evaluation: AERMOD performs well at some monitors
- NO₂ evaluation:
 - PVMRM and ADMSM perform better than OLM; OLM overpredicts
 - PVMRM and ADMSM broadly replicate near-field NO₂/NO_x ratios
 - PVMRM predicts some high NO₂ concentrations exceeding the 'upper bound'
 OLM values likely related to entrainment method rather than lack of explicit chemistry
 - ADMSM NO₂ statistics more consistent with NOx than PVMRM; ADMSM shows better performance in ratio plots

Conclusions (2 of 2)

Next steps

- Further chemistry scheme evaluation is planned using other new datasets
- ADMSM to be incorporated within the latest version of AERMOD

Other uses for this dataset

- Building downwash evaluation
- Sensitivity of model results to sigma-theta

Suggestion for future measurement campaigns

• More downwind monitors in the range 0.5 - 1 km and further, to evaluate performance in terms of the variation of NO_2/NO_x with distance

Co-authors and acknowledgments

Cambridge Environmental Research Consultants

- David Carruthers
- Steve Smith
- Martin Seaton

Co-authors

AECOM

- Robert Paine
- Christopher Warren

American Petroleum Institute

Cathe Kalisz

Acknowledgements

American Petroleum Institute

- Funded study
- Chris Rabideau (Chair of API Modeling Group)

Pipeline Research Council International

 Provided compressor station dataset

United States Environmental Protection Agency

Chris Owen

Questions?

Jenny.Stocker@cerc.co.uk

www.cerc.co.uk